Применение сверхпроводников. Школьная энциклопедия

Вариант 14
Часть 1
Прочитайте текст и выполните задания 1- 3

(1)Сверхпроводники используют для создания устройств, которые технически невозможно или экономически невыгодно изготавливать с применением традиционных проводниковых материалов меди и алюминия. (2)<..> мощные магнитные системы для установок термоядерного синтеза или ускорителей элементарных частиц, сверхбыстродействующие ограничители тока, медицинские томографы, спектрометры высокого разрешения, образцы перспективной военной техники, поезда, на магнитной подушке созданы с применением сверхпроводящих материалов. (3)Устройства, изготовленные с использованием сверхпроводящих материалов, характеризуются значительно меньшими размерами и массой.
1. Укажите два предложения, в которых верно передана ГЛАВНАЯ информация, содержащаяся в тексте. Запишите номера этих предложений.
Для создания таких устройств, которые невозможно или невыгодно изготавливать с использованием обычных проводников, применяют сверхпроводники, помогающие сделать эти устройства более компактными и лёгкими.
При создании мощных магнитных систем для установок термоядерного синтеза или ускорителей элементарных частиц, сверхбыстродействующих ограничителей тока, медицинских томографов, спектрометров высокого разрешения, образцов перспективной военной техники, поездов на магнитной подушке иногда используют сверхпроводящие металлы.
Для создания сооружений, которые нецелесообразно возводить с применением лишь традиционных проводниковых материалов меди и алюминия, используют также сверхпроводники.
Сверхпроводники используют при создании устройств, изготовление которых из обычных проводников невозможно или экономически невыгодно, причём применение сверхпроводников делает устройства менее объёмными и тяжёлыми.
Для изготовления таких устройств, которые должны обладать небольшим объёмом и массой при разнообразии выполняемых ими функций, используют проводники.
2. Какое из приведённых ниже слов (сочетаний слов) должно стоять на месте пропуска во втором (2) предложении текста? Выпишите это слово (сочетание слов).
Наоборот, Так как
Несмотря на это, Тем не менее
Например,
3. Прочитайте фрагмент словарной статьи, в которой приводятся значения слова МАССА. Определите значение, в котором это слово употреблено в третьем (3) предложении текста. Выпишите цифру, соответствующую этому значению в приведённом фрагменте словарной статьи.
МАССА, -ы, ж.
Совокупность чего-нибудь, а также что-нибудь большое, сосредоточенное в одном месте. Воздушные массы. Тёмная м. здания.
Одна из основных физических характеристик материи, определяющая её инертные и гравитационные свойства. Единица массы.
Тестообразное бесформенное вещество, густая смесь. Древесная м. (полуфабрикат для выделки бумаги). Расплавленная м. чугуна.
Множество, большое количество кого-чего-нибудь. У меня м. времени. Тратить массу сил.
мн. Широкие слои трудящегося населения. Воля масс. Оторваться от масс (утратить связь с народом).
4. В одном из приведённых ниже слов допущена ошибка в постановке ударения: НЕВЕРНО выделена буква, обозначающая ударный гласный звук. Выпишите это слово.
кремЕнь Оптовый
окружИт отбылА
дОнизу
5. В одном из приведённых ниже слов НЕВЕРНО употреблено выделенное слово. Исправьте лексическую ошибку, подобрав к выделенному слову пароним. Запишите подобранное слово.
Требуется принятие не ПОПУЛИСТСКИХ, а экономически оправданных решений.
Её ЦАРСТВЕННЫЙ вид внушал доверие и располагал к серьёзному разговору о будущей России.
Координационному совету необходимо было ИЗБРАТЬ председателя и утвердить новый состав исполкома.
Многоэтажный КАМЕННЫЙ дом был украшен лепниной.
Некоторые коллеги в течение долгих лет поддерживали ДРУЖНЫЕ отношения.
6. В одном из выделенных ниже слов допущена ошибка в образовании формы слова. Исправьте ошибку и запишите слово правильно.
в ТЫСЯЧА девятисотом году зимние МЕСЯЦА
ПРОПОЛОЩИ бельё ШЕСТЬЮСТАМИ солдатами
прошли наиболее УСПЕШНО
7. Установите соответствие между грамматическими ошибками и предложениями, в которых они допущены: к каждой позиции первого столбца подберите соответствующую позицию из второго столбца.
Запишите в таблицу выбранные цифры под соответствующими буквами.
ГРАММАТИЧЕСКИЕ ОШИБКИ

ПРЕДЛОЖЕНИЯ

нарушение в построении
предложения с причастным оборотом

1)В апрельских номерах журнала «Нового мира» были опубликованы стихи молодого талантливого поэта.

Б) нарушение видовременной
соотнесённости глагольных форм

2)Фруктоза это одно из веществ, получаемая из ягод и фруктов.

нарушение в построении предложения
с несогласованным
приложением

3)Сразу по приезде в Юрьевец туристы обратят внимание на колокольню Георгия Победоносца.

Г) нарушение связи между
подлежащим и сказуемым
4)Солдаты, выполнявшие долг перед Родиной, провели в степи без еды и воды четыре суток.

Д) неправильное употребление
имени числительного
5)Бабушка вяжет шарф и подарила его своему внуку.

6)Этот камерный зал, использующийся сейчас преимущественно в учебных целях, до ноября 2007 года назывался Белым залом.

7) Все, кто побывал в Долине гейзеров, понимает, почему её считают одним из чудес света.

8)Художественная речь, которая принципиально отличается от официально-деловой и научной, по ряду признаков сближается с публицистической.

9) Первыми, кто пришёл на избирательный участок для голосования, были мои соседи, пенсионеры.

8. Определите слово, в котором пропущена безударная чередующаяся гласная корня. Выпишите это слово, вставив пропущенную букву.
Ди..пазон
Напом..нание
Аргум..нтировать
Прод..лжение
С..мметрия
9. Определите ряд, в котором в обоих словах в приставке пропущена одна и та же буква. Выпишите эти слова, вставив пропущенную букву.
пр..мудрый, пр..уныл
чере..чур, ра..свет
бе..печный, и..гнать
пр..думать, пр..града
о..дыхать, по..кладка
10. Выпишите слово, в котором на месте пропуска пишется буква Е.
солом..нка обид..лись усидч..вый настра..вать привередл.. вый
11. Выпишите слово, в котором на месте пропуска пишется буква А.
скач..щий
движ..щаяся
леч..щий
маш..щий (рукой)
(крестьяне) перевяж..т
12. Определите предложение, в котором НЕ со словом пишется СЛИТНО. Раскройте скобки и выпишите это слово.
Мы с приятелем встречались (НЕ)РЕДКО, а почти каждый день.
Избавляйтесь от привычки бросать дело, (НЕ)ДОВОДЯ его до конца.
Мы дошли до финала, но наша цель (НЕ)ДОСТИГНУТА.
(НЕ)ЗАВЕРШЁННАЯ игра перенесена на завтра и обязательно будет продолжена.
Река была далеко (НЕ)ШИРОКОЙ, всего около десяти метров.
13. Определите предложение, в котором оба выделенных слова пишутся СЛИТНО. Раскройте скобки и выпишите эти два слова.
ЧТО(БЫ) поправить здоровье, можно смело отправляться на Алтай, (ПО)ЭТОМУ скорее покупайте путёвку.
Одно и ТО(ЖЕ) слово может означать совершенно разное, ПОТОМУ(ЧТО) существует явление омонимии.
СКОЛЬКО(БЫ) ни рассуждали критики, многие произведения искусства (НА)ВСЕГДА останутся загадкой для человечества.
Вам необходимо (ПО)ПРЕЖНЕМУ предоставлять отчёт (В)ВИДЕ презентации.
Можно (ПО)РАЗНОМУ объяснять смысл сна Раскольникова, но (ПО)НАЧАЛУ может показаться, что перед нами добрый и милосердный человек.
14. Укажите цифру(-ы), на месте которой(-ых) пишется НН.
Романтичность свойстве(1)а всему. Романтическая настрое(2)ость не позволяет человеку быть лживым, невежестве(3)ым, трусливым и жестоким. В романтике заключе(4)а облагораживающая сила.
15. Расставьте знаки препинания. Укажите два предложения, в которых нужно поставить ОДНУ запятую. Запишите номера этих предложений.
На вольном просторе блеск и движение грохот и гром.
Без матери не было бы ни тепла ни радости ни жизни.
Миновали столетия и под натиском варваров пала когда-то могучая и непобедимая Римская империя.
Человек велик да прекрасен да полон мечты.
Художники и скульпторы объединились и создали свою ассоциацию.
16. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых) в предложении должна(-ы) стоять запятая(-ые).
Побывав во многих странах мира (1) Юрий Гагарин посетил (2) пострадавшую от атомной бомбы (3) Японию (4) радушно встретившую прославленного космонавта.
17. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых) должна(-ы) стоять запятая(-ые).
Мы входим в зал.
Сияющие люстры (1)
От напряженья (2)
Кажется (3) дрожат!
Звенит хрусталь И действует на чувства,
Мы входим в зал Без всякого искусства,
А здесь искусством (4)
Видно (5) дорожат.
(Н. М. Рубцов)
18. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых) в предложении должна(-ы) стоять запятая(-ые).
Кирибеевичу (1) поступками.которого (2) руководит эгоистическое чувство (3) противопоставлен Калашников (4) который живёт согласно принципам честности и порядочности.
19. Расставьте все знаки препинания: укажите все цифры, на месте которых в предложении должны стоять запятые.
Здесь всё было по-старому (1) и (2) если кому-то вдруг становилось грустно (3) то это лишь потому (4) что с этим местом у всех было связано много воспоминаний.
Прочитайте текст и выполните задания 20 - 25
() Когда-то давно меня задел один разговор, случайный летний разговор на берегу моря.
Я уже не помню точно фраз, но спорили о том, кто Сальери для Пушкина.
(З)Противник, злодей, которого он ненавидит, или же это воплощение иного отношения к искусству? (4)Можно ли вообще в этом смысле связывать искусство и науку? (5)А что если для Пушкина Моцарт и Сальери это Пушкин и Пушкин, то есть борение двух начал?
От этого случайного горячего спора осталось ощущение неожиданности.
Злодейство было для меня всегда очевидно и бесспорно. (8)Злодейством был фашистский мотоциклист. (9)В блестящей чёрной коже, в чёрном шлеме он мчался на чёрном мотоцикле по солнечному просёлку. (10)Мы лежали в кювете. (11)Перед нами были тёплые желтеющие поля, синее небо, вдали низкие берега нашей Луги, притихшая деревня, и оттуда нёсся грохочущий чёрный мотоцикл. (12)Винтовка дрожала в моих руках... (13)Разумеется, я не думал ни о Пушкине, ни о Сальери.
Это пришло куда позже тогда, на войне, надо было стрелять.
Могут ли гении совершать злодейства? (16)Может ли злодей-убийца Сальери оставаться гением? (17)Оттого, что он отравитель, разве музыка его стала хуже?
Что же, злодейство доказывает, что Сальери не гений?
Для Пушкина гений сохраняет творческую крылатость души. (20)Гений не столько степень таланта, сколько свойство его некое нравственное начало, добрый дух.
(21)Слово «гений» ныне обычно связано с великими изобретениями, открытиями. (22)Конечно, в законе относительности нет ничего ни нравственного, ни безнравственного. (23)Наверное, тут следует разделить: открытие может быть гениальным, но гений не только открытие. (24)В пушкинском Моцарте гениальность его музыки соединена с личностью, с его добротой, доверчивостью, щедростью. (25)Моцарт восторгается всем хорошим, что есть у Сальери. (26)Гений Моцарта исключителен: он весь не труд, а озарение, он символ того таинственного наития, которое свободно изливается абсолютным совершенством.
(27)Проще всего было бы объяснить ненависть завистью, о которой твердит сам Сальери. (28)Но разве Сальери лишь завистник? (29)Он смолоду признаёт чужой гений, он учится у великих, преклоняется перед ними. (ЗО)Вопрос о гении и злодействе подвергает сомнению задачу, которую решал Сальери всю свою жизнь.
Может ли человек стать гением?
Достичь трудом, силой своего разума того, что считается божественным даром? (ЗЗ)Сальери считал, что да, может.
Молодость Сальери, зрелость, вся его жизнь возникла для меня как целеустремлённая, в каком-то смысле идеальная прямая. (35)Таким мне представлялся идеал учёного. (Зб)Настойчивость и ясное понимание, чего ты хочешь. (37)Сальери одержим. (38)Но идея у него особая стать творцом. (ЗЭ)Способность творить ему не была дана, он добывал её, вырабатывал...
Это не слепой бунт, это восстание Разума, вернее, Расчёта. (41)В наше время, задавшись такой целью, он мог бы стать выдающимся кибернетиком.
Но и композитором он стал выдающимся. (43)Музыка его нашла признание. (44)Сам Моцарт твердит в счастливые минуты один из его мотивов.
Чем отличается гений Моцарта от негения Сальери? (46)Грань тут неуловимая.
Голос, который диктует Моцарту божественные созвучия, не слышен окружающим.
Для них и Моцарт, и Сальери одинаковы: оба всем своим существом чувствуют силу гармонии, оба жрецы прекрасного, избранные служить своему делу.
До той минуты, как Моцарт поднял стакан с ядом, оба и Моцарт, и Сальери были равноправные сыновья гармонии.
Но теперь гений отделился, яд разделил их. (51)Последнее средство отделить подлинный гений от мнимого это нравственное испытание. (52)Злодейство открыло истинную, тёмную сущность Сальери. (53)Маска сорвана.
(54)Сущность открывается и самому Сальери. (55)Вместе с ядом начинает действовать логическая схема: гений для Моцарта не может быть злодеем, а так как Моцарт сам гений, бесспорный гений, то, следовательно, он имеет право судить, и, значит, Сальери не гений...
(бб)Нравственное начало становится пробой гения. (57)И человечество отбирает для себя лишь тех, кто несёт это нравственное начало.
Пушкин оставляет Сальери жить и мучиться. (59)Остаётся злодейство, но торжествует гений.
(По Д. А. Гранину*)
* Даниил Александрович Гранин (род. в 1919 г.) русский советский писатель, общественный деятель.
20. Какие из высказываний соответствуют содержанию текста? Укажите номера ответов.
Случайно подслушанный разговор об отношении Пушкина к Сальери заставил рассказчика задуматься над главным вопросом: может ли гений совершить злодейство?
Сальери, наделённый от рождения способностью творить, в молодости хотел стать учёным.
Моцарт и Сальери были равноправны в служении искусству до той поры, пока Сальери не решился на убийство Моцарта.
Сальери считал, что можно трудом и разумом достичь божественного дара.
Сальери убийством Моцарта доказал, что трудолюбивый человек может стать гением.
21. Какие из перечисленных утверждений являются ошибочными? Укажите номера ответов.
Предложения 9, 11 содержат элементы описания.
Предложение 25 подтверждает суждение, высказанное в предложении 24.
Предложения 29, 30 содержат повествование.
Предложение 41 противопоставлено по содержанию предложению 40.
Предложения 46-48 содержат рассуждение.
22. Из предложений 49-53 выпишите антонимы (антонимическую пару).
23. Среди предложений 11-18 найдите такое(-ие), которое(-ые) связано(-ы) с предыдущим при помощи личного и притяжательного местоимений. Напишите номер(-а) этого(-их) предложения(-ий).
24. «Предмет беседы с читателем, связанный с искусством, позволяет автору широко
использовать средства выразительности, например троп (А) („божественные
созвучия“ в предложении 47, „тёмную сущность» в предложении 52), лексическое
средство (Б) („озарение», „наитие» в предложении 26). Обсуждая
с читателем давно волновавшую его проблему, Д. А. Гранин использует приёмы:
(В) (предложения 31-33, 45, 46) и (Г) (в предложениях 26, 59),
который помогает автору быть особенно убедительным».
Список терминов:
гипербола
книжные слова
противопоставление
восклицательные предложения
анафора
эпитеты
диалектизмы
вопросно-ответная форма изложения
парцелляция
Часть 2
Напишите сочинение по прочитанному тексту.
Сформулируйте одну из проблем, поставленных автором текста. Прокомментируйте сформулированную проблему. Включите в комментарий два примера-иллюстрации из прочитанного текста, которые, по Вашему мнению, важны для понимания проблемы исходного текста (избегайте чрезмерного цитирования). Сформулируйте позицию автора (рассказчика). Напишите, согласны или не согласны Вы с точкой зрения автора прочитанного текста. Объясните почему. Своё мнение аргументируйте, опираясь в первую очередь на читательский опыт, а также на знания и жизненные наблюдения (учитываются первые два аргумента). Объём сочинения не менее 150 слов.
Работа, написанная без опоры на прочитанный текст (не по данному тексту), не оценивается. Если сочинение представляет собой пересказанный или полностью переписанный исходный текст без каких бы то ни было комментариев, то такая работа оценивается 0 баллов.
Сочинение пишите аккуратно, разборчивым почерком.

Вариант 14

Номер задания:
Ответ задания:

4
оптовый

5
дружественные

6
месяцы

8
напоминание

9
чересчуррассвет

10
обиделись

11
лечащий

12
незавершённая

13
чтобыпоэтому

14
123 другая комбинация этих цифр

17
2345 другая комбинация этих цифр

18

19
134 другая комбинация этих цифр

20
134 другая комбинация этих цифр

22
подлинныймнимого

1. Проблема природы гениальности. (Кто такой гений? Какова природа гениальности?)
1. Гений наделён от природы талантом: он творит по наитию, в результате таинственного озарение, «которое свободно изливается абсолютным совершенством ».

2. Проблема взаимосвязи гениальности и нравственности. (Как взаимосвязаны гениальность и нравственность человека?)
2. Гениальность напрямую связана с личностью гения, с его добротой, доверчивостью, щедростью: гений человек нравственный.

3. Проблема мнимой гениальности. (В чём отличие мнимого гения от подлинного? Может ли стать гением безнравственный человек?)
3. Единственное средство отделить подлинный гений от мнимого это нравственное испытание: безнравственный человек не может стать гением.

4. Проблема природы злодейства. (Что заставляет человека совершить злодейство?)
4. На злодейство человека толкает не столько зависть по отношению к другим людям, сколько расчёт, лишённый нравственного начала.

5. Проблема борьбы двух противоположных начал: нравственного и безнравственного, гениальности и злодейства. (Кто побеждает в борьбе гения со злодеем?)
5. Хотя злодей убивает гения, торжествует гений, ведь человечество отбирает для себя лишь тех, кто несёт нравственное начало.

Сверхпроводимость – свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Т К, характерной для данного материала. Сверхпроводимость обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых ПП и полимеров. Рекордно высоким значением Т К (около 23 К) обладает соединение Nb 3 Gе.

Основные явления . Скачкообразное исчезновение сопротивления ртути при понижении температуры впервые наблюдал голландский физик X. Камерлинг-Оннес (1911) (рисунок 8.1). Он пришёл к выводу, что ртуть при Т = 4,15 К переходит в новое состояние, которое было названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при Т < Т К в достаточно сильном магнитном поле.

Рисунок 8.1 – Зависимость сопротивления R от темп-ры Т для Hg и для Pt. Ртуть при Т=4,15 К переходит в сверхпроводящее

состояние. R 0°C – значение R при 0°С

Падение сопротивления до нуля происходит на протяжении очень узкого интервала температур, ширина которого для чистых образцов составляет 10 -3 –10 -4 К и возрастает при наличии примесей и других дефектов структуры.

Отсутствие сопротивления в сверхпроводя­щем состоянии с наибольшей убедительностью демонстрируется опы­тами, в которых в сверхпроводящем кольце возбуждается ток, практиче­ски не затухающий. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепля­ется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры ТК, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше, чем 10 -20 Ом·см (сопротивление чистых образцов Си или Ag составляет около 10 -9 Ом∙см при температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, и позднее установили, что слабое магнитное поле не проникает в глубь сверхпроводника независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток (рисунок 8.2, а, б, в).

Рисунок 8.2 – Распределение магнитного поля около сверхпроводящего шара с исчезающим сопротивлением (идеальный проводник): а – при Т>Т К; б – при Т<Т К, внеш.поле Н ВН ≠0; в – при Т<Т К, Н = Н ВН

Выталкивание магнитного поля из сверхпроводящего образца (эффект Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный диамагнетик той же формы с магнитной восприимчивостью η=1/4. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле Н однородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, М = –Н/4. Это примерно в 106 раз больше по абсолютной величине, чем для металла в нормальном состоянии. Эффект Мейснера связан с тем, что при Н < Н К в поверхностном слое (толщиной 10 -5 –10 -6 см) сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника.

Рисунок 8.3 – Схема образования электронных пар в сверхпроводящем металле

Физическая природа сверхпроводимости. Явление сверхпроводимости можно понять и обосновать только с помощью квантовых представлений. Почти полвека с момента открытия сущность этого явления оставалась неразгаданной из-за того, что методы квантовой механики еще не в полной мере использовались в физике твердого тела. Микроскопическая теория сверхпроводимости, объясняющая все опытные данные, была пред­ложена в 1957 г. американскими учеными Бардиным, Купером и Шриффером (теория БКШ). Значительный вклад в развитие теории сверхпроводимости внесли работы советского академика Н.Н. Боголюбова. Согласно установившимся представлениям, явление сверхпроводимости возникает в том случае, когда электроны в металле притягиваются друг к другу. При­тяжение электронов возможно только в среде, содержащей положительно заряженные ионы, поле которых ослабляет силы кулоновского отталкивания между электронами. Притягиваться могут лишь те электроны, которые принимают участие в электропроводности, т.е. расположенные вблизи уровня Ферми. Если такое притяжение имеет место, то электроны с противоположным направлением импульса и спина связываются в пары, называемые куперовскими. В образовании куперовских пар решающую роль играют взаимодействие электронов с тепловыми колебаниями решетки – фононами. В твердом теле электроны могут как поглощать, так и порождать фононы.

Мысленно представим себе следующий процесс: один из электронов, взаимодействуя с решеткой, переводит ее в возбужденное состояние и изменяет свой импульс; другой электрон, также взаимодействуя с решеткой, переводит ее в нормальное состояние и тоже изменяет свой импульс. В результате состояние решетки не изменяется, а электроны обмениваются квантами тепловой энергии – фононами. Обменное фононное взаимодействие и вызывает силы притяжения между электронами, которые превосходят силы кулоновского отталкивания. Обмен фононами при участии решетки происходит непрерывно. В упрощенном виде обменное фононное взаимодействие проиллюстрировано схемой (рисунок 8.3). Электрон, движущийся среди положительно заряженных ионов, поляризует решетку, т. е. электростатическими силами притягивает к себе ближайшие ионы. Благодаря такому смещению ионов в окрестности траектории электрона локально возрастает плотность положительного заряда. Второй электрон, движущийся вслед за первым, естественно, может притягиваться областью с избыточным положительным зарядом. В результате косвенным образом, за счет взаимодействия с решеткой, между электронами 1 и 2 возникают силы притяжения. Второй электрон становится партнером первого – образуется куперовская пара. Поскольку силы притяжения невелики, спаренные электроны слабо локализованы в пространстве. Эффективный диаметр куперовской пары имеет порядок 10-7 м, т. е. охватывает тысячи элементарных ячеек. Эти парные образования перекрывают друг друга, постоянно распадаются и вновь создаются, но в целом все пары образуют электронный конденсат, энергия которого за счет внутреннего взаимодействия меньше, чем у совокупности разобщенных нормальных электронов. Вследствие этого в энергетическом спектре сверхпроводника появляется энергетическая щель ΔД – область запрещенных энергетических состояний (рисунок 8.4). Спаренные электроны располагаются на дне энергетической щели. Грубая оценка показывает, что количество таких электронов составляет около 10-4 от общего их числа.

Рисунок 8.4 – Распределение электронов по энергиям в металле

Размер энергетической щели зависит от температуры, достигая максимального значения при абсолютном нуле и полностью исчезая при Т = Тсв. Теория БКШ дает следующую связь ширины щели с критической температурой перехода

(8.1)

Формула (8.1) достаточно хорошо подтверждается экспериментально. Для большинства сверхпроводников энергетическая щель составляет 10-4–10-3 эВ.

Как было показано, электрическое сопротивление металла обусловлено рассеянием электронов на тепловых колебаниях решетки и на примесях. Однако при наличии энергетической щели для перехода электронов из основного состояния в возбужденное требуется достаточная порция тепловой энергии, которую при низких температурах электроны не могут получить от решетки, поскольку энергия тепловых колебаний меньше ширины щели. Именно поэтому спаренные электроны не рассеиваются на дефектах структуры. Особенностью куперовских пар является их импульсная упорядоченность, состоящая в том, что все пары имеют одинаковый импульс и не могут изменять свои состояния независимо друг от друга.

Электронные волны, описывающие движение пар, имеют одинаковые длину и фазу. Фактически движение всех электронных пар можно рассматривать как распространение одной электронной волны, которая не рассеивается решеткой, «обтекает» дефекты структуры. Такая согласованность в поведении пар обусловлена высокой мобильностью электронного конденсата: непрерывно меняются наборы пар, происходит постоянная смена партнеров. При абсолютном нуле все электроны, расположенные вблизи уровня Ферми, связаны в пары. С повышением температуры за счет тепловой энергии происходит разрыв некоторой части электронных пар, вследствие чего уменьшается ширина щели. Движение неспаренных электронов, переходящих с основных уровней на возбужденные, затрудняется рассеянием на дефектах решетки. При температуре Т = Тсв происходит полный разрыв всех пар, ширина щели обращается в нуль, сверхпроводимость исчезает.

Переход вещества в сверхпроводящее состояние при его охлаждении происходит в очень узком интервале температур (сотые доли градуса). Неоднородности структуры, создаваемые примесями, искажениями решетки, границами зерен, не приводят к уничтожению сверхпроводимости, а вызывают лишь расширение температурного интервала перехода из одного состояния в другое (рисунок 8.5). Электроны, ответственные за создание сверхпроводимости, не обмениваются энергией с решеткой.

Поэтому при температуре ниже критической наблюдается существенное уменьшение теплопроводности металлов.

Рисунок 8.5

1 – монокристалл; 2 – поликристалл;

Магнитные свойства сверхпроводников. Важнейшая особенность сверхпроводников состоит в том, что внешнее магнитное поле совершенно не проникает в толщу образца, затухая в тончайшем слое.

Силовые линии магнитного поля огибают сверхпроводник. Это явление, получившее название эффекта Мейснера, обусловлено тем, что в поверхностном слое сверхпроводника при его внесении в магнитное поле возникает круговой незатухающий ток, который полностью компенсирует внешнее поле в толще образца. Глубина, на которую проникает магнитное поле, обычно составляет 10-7–10-8 м. Таким образом, сверхпроводники по магнитным свойствам являются идеальными диамагнетиками с магнитной проницаемостью μ = 0. Как всякие диамагнетики, сверхпроводники выталкиваются из магнитного поля. При этом эффект выталкивания выражен столь сильно, что открываются возможности удерживать груз в пространстве с помощью магнитного поля. Аналогичным образом можно заставить висеть постоянный магнит над кольцом из сверхпроводящего материала, в котором циркулируют индуцированные магнитом незатухающие токи (опыт В. К. Аркадьева). Состояние сверхпроводимости может быть разрушено, если напряженность магнитного поля превысит некоторое критическое значение НСВ. По характеру перехода материала из сверхпроводящего состояния в состояние обычной электропроводности под действием магнитного поля различают сверхпроводники I и II рода. У сверхпроводников I рода этот переход происходит скачкообразно, как только напряженность поля достигнет критического значения. Кривая намагничивания таких материалов показана на рисунке 2 13. Сверхпроводники II рода переходят из одного состояния в другое постепенно; для них различают нижнюю НСВ1 и верхнюю НСВ2 критические напряженности поля. В интервале между ними материал находится в промежуточном гетерогенном состоянии, в котором сосуществуют нормальная и сверхпроводящая фазы. Соотношение между их объемами зависит от Н. Таким образом, магнитное поле постепенно проникает в сверхпроводник II рода (рисунок 8.7). Однако материал сохраняет нулевое сопротивление вплоть до верхней критической напряженности поля.

Рисунок 8.6 Зависимость изменения магнитной индукции внутри сверхпроводника от напряженности внешнего магнитного поля: а – сверхпроводник I рода; б – сверхпроводник II рода

Рисунок 8.7 – Температурные зависимости критической напряженности поля для свинца и белого олова (а ); качественные фазовые диаграммы для сверхпроводников I(б ) и II(в ) рода: Св – сверхпроводящее состояние; См – смешанное состояние; П – проводящее нормальное состояние

Критическая напряженность магнитного поля зависит от температуры. При Т = ТСВ она обращается в нуль, но монотонно возрастает при стремлении температуры к ОК. Для сверхпроводников I рода температурная зависимость НСВ в хорошем приближении описывается выражением

где Н СВ (0) – напряженность критического поля при температуре абсолютного нуля. Иллюстрацией зависимости (8.2.) служат кривые на рисунке 8.7, а. Различия в свойствах сверхпроводников I и II рода подчеркивают фазовые диаграммы, показанные на рисунке 8.7,б,в. Область промежуточного (смешанного) состояния, существующая у сверхпроводников II рода, расширяется при понижении температуры. Различие между НСВ1 и НСВ2 может быть в сотни раз. Критическая напряженность магнитного поля для сверхпроводников I рода составляет приблизительно 105 А/м, а у сверхпроводников II рода значение верхней критической напряженности может превышать 107 А/м. Сверхпроводимость может быть разрушена не только внешним магнитным полем, но и током, проходящим по сверхпроводнику, если он превышает некоторое критическое значение I СВ. Для сверхпроводников I рода предельная плотность тока ограничивается достижением на поверхности образца критической напряженности магнитного поля. В случае длинной прямолинейной проволоки круглого сечения радиуса r предельный ток определяется формулой

Поскольку в сверхпроводящих элементах ток проходит в тонком поверхностном слое, средняя плотность тока, отнесенная ко всему поперечному сечению, уменьшается с увеличением диаметра провода. Для сверхпроводников II рода соотношение (8.3) не выполняется и связь между IСВ и IIСВ носит более сложный характер.

Сверхпроводящие материалы. Явление сверхпроводимости при криогенных температурах достаточно широко распространено в природе. Сверхпроводимостью обладают 26 металлов. Большинство из них являются сверхпроводниками I рода с критическими температурами перехода ниже 4,2 К. В этом заключается одна из причин того, что большинство сверхпроводящих металлов для электротехнических целей применить не удается. Еще 13 элементов проявляют сверхпроводящие свойства при высоких давлениях. Среди них такие полупроводники, как кремний, германий, селен, теллур, сурьма и др. Следует заметить, что сверхпроводимостью не обладают металлы, являющиеся наилучшими проводниками в нормальных условиях. К ним относятся золото Au, медь Cu, серебро Ag. Малое сопротивление этих материалов указывает на слабое взаимодействие электронов с решеткой. Такое слабое взаимодействие не создает вблизи абсолютного нуля достаточного межэлектронного притяжения, способного преодолеть кулоновское отталкивание. Поэтому и не происходит их переход в сверхпроводящее состояние.

Кроме чистых металлов сверхпроводимостью обладают многие интерметаллические соединения и сплавы. Общее количество наименований известных в настоящее время сверхпроводников составляет около 2000. Среди них самыми высокими критическими параметрами обладают сплавы и соединения ниобия Nb (таблица 8.1 и таблица 8.2). Некоторые из них позволяют использовать для достижения сверхпроводящего состояния вместо жидкого гелия более дешевый хладагент – жидкий водород.

Несмотря на то, что принципиальные причины возникновения сверхпроводимости твёрдо установлены, современная теория не даёт возможности рассчитать значения Тк или Нк для известных сверхпроводников или предсказать их для нового сверхпроводящего сплава. Однако ряд эмпирических закономерностей – правил Маттиаса (1955) – позволяет определить направление поисков сплавов с высокими Тк и Нк.

Таблица 8.1

Таблица 8.2 - Значения критических параметров сверхпроводников

Все интерметаллические соединения и сплавы относятся к сверхпроводникам II рода. Однако деление веществ по их сверхпроводящим свойствам на два вида не является абсолютным. Любой сверхпроводник I рода можно превратить в сверхпроводник II рода, если создать в нем достаточную концентрацию дефектов кристаллической решетки. Например, у чистого олова Тсв = 3,7 К, но если вызвать в олове резко неоднородную механическую деформацию, то критическая температура возрастет до 9 К, а критическая напряженность магнитного поля увеличится в 70 раз.

Сверхпроводимость никогда не наблюдается в системах, в которых существует ферро- или антиферромагнетизм. Образованию сверхпроводящего состояния в полупроводниках препятствует малая концентрация свободных электронов. Однако в материалах с большой диэлектрической проницаемостью силы кулоновскою отталкивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция (SrTiO3), относящийся к группе сегнетоэлектриков. Ряд полупроводников удается перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей (GeTe, SnTe, CuS и др.).

В настоящее время промышленность выпускает широкий ассортимент сверхпроводящих проволок и лент для самых различных целей. Изготовление таких проводников связано с большими технологически ми трудностями. Они обусловлены плохими механическими свойствами многих сверхпроводников, их низкой теплопроводностью и сложной структурой проводов. Особенно большой хрупкостью отличаются интерметаллические соединения с высокими критическими параметрами. Поэтому вместо простых проволок и лент приходится создавать композиции из двух (обычно сверхпроводник с медью) и даже нескольких металлов. Для получения многожильных проводов из хрупких интерметаллов особенно перспективен бронзовый метод (или метод твердофазной диффузии), освоенный промышленностью. По этому методу прессованием и волочением создается композиция из тонких нитей ниобия в матрице из оловянной бронзы. При нагреве олово Sn из бронзы диффундирует в ниобий Nb, образуя на его поверхности тонкую сверхпроводящую пленку станнида ниобия Nb 3 Sn. Такой жгут может изгибаться, но пленки остаются целыми.

Применение сверхпроводников в различных областях науки техники . Сверхпроводящие элементы и устройства находят все более широкое применение в самых различных областях науки и техники. Разработаны крупномасштабные долгосрочные программы промышленного использования сильноточной сверхпроводимости.

Одно из главных применений сверхпроводников связано с получением сверхсильных магнитных полей. Сверхпроводящие соленоиды позволяют получать однородные магнитные поля напряженностью свыше 107 А/м в достаточно большой области пространства, в то время как пределом обычных электромагнитов с железными сердечниками являются напряженности порядка 106 А/м. К тому же в сверхпроводящих магнитных системах циркулирует незатухающий ток, поэтому не требуется внешний источник питания. Сильные магнитные поля необходимы при проведении научных исследований. Сверхпроводящие соленоиды позволяют в значительной мере уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц. Перспективно использование сверхпроводящих магнитных систем для удержания плазмы в реакторах управляемого термоядерного синтеза, в магнитогидродинамических (МГД) преобразователях тепловой энергии в электрическую, в качестве индуктивных накопителей энергии для покрытия пиковых мощностей в масштабах крупных энергосистем. Широкое развитие получают разработки электрических машин со сверхпроводящими обмотками возбуждения. Применение сверхпроводников позволяет исключить из машин сердечники из электротехнической стали, благодаря чему уменьшаются в 5 – 7 раз их масса и габариты при сохранении мощности. Экономически обосновано создание сверхпроводящих трансформаторов, рассчитанных на высокий уровень мощности (десятки-сотни мегаватт). Значительное внимание в разных странах уделяют разработке сверхпроводящих линий электропередач на постоянном и переменном токах. Разработаны опытные образцы импульсных сверхпроводящих катушек для питания плазменных пушек и систем накачки твердотельных лазеров. В радиотехнике начинают использовать сверхпроводящие объемные резонаторы, обладающие, благодаря ничтожно малому электрическому сопротивлению, очень высокой добротностью.

План реферата

1.Свойство сверхпроводимого состояния……………………………3

2.Сверхпроводник в магнитном поле………………………………...4

3.Изотермические свойства…………………………………………...5

4.Изотопический эффект………………………………………………6

5.Квантовая основа…………………………………………………….7

6.Условия сверхпроводимости………………………………………..9

а.Сверхпроводники I и II рода……………………………………...9

б.Разрушение током………………………………………………..10

в.Новые вещества…………………………………………………..10

7.Некоторые применения сверхпроводимости……………………..10

Литература…………………………………………………………...15

В 1911 г. Камерлинг-Оннес открыл явление сверхпроводимости,изучение которого интенсивно продолжается до наших дней и составляет одно из важнейших направлений физики твердого тела.Оказалось, что при температуре,близкой к 4 0 К,электрическое сопротивление ртути скачком обращается в нуль.

Многие металлы и металлические сплавы при температурах,близких к абсолютному нулю, переходят в особое сверхпроводящее состояние,наиболее поразительным свойством которого является с в е р х п р о в о д и м о с т ь- полное отсутствие сопротивления постоянному электрическому току.Наведенный в сверхпроводящем кольце ток сохраняется неизменным практически бесконечно долго – в течение нескольких лет не удается обнаружить сколько-нибудь заметного затухания этого тока.Этот эксперимент провел в1959 г. американский ученый физик Коллинз.

Эффект сверхпроводимости состоит в исчезновении электрического сопротивления при конечной, отличной от О 0 К, температуре (критическая температура- Т к).

Открытие Камерлинга-Оннеса повлекло исследования разных веществ –сверхпроводников и их свойств. Были отмечены резкая аномалия магнитных, тепловых и ряда других свойств, так что правильнее говорить не только о сверпроводимости, а об особом, наблюдаемом при низких температурах состоянии вещества.

Сейчас выявлена целая группа веществ –сверхпровод – ников (В 1975 их было >500).Самой высокой критической температурой среди чистых веществ обладает ниобий (Т к =9,22 0 К), а наиболее низкой – иридий (Т к = 0,140 0 К).

Сложное соединение,синтизированное в 1967 г.,сохраняет сверхпроводимость до 20,1 0 К, в 1973 г. рекорд равнялся 22,3 0 К.

Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристала.Например,серое олово является полупроводником, а белое олово- металлом, способным к тому же при температуре,равной 3,72 0 К,переходить в сверхпроводящее состояние.

Бериллий–сверхпроводник в виде тонкой пленки. Некоторые вещества становятся сверхпроводниками при высоком давлении (Ва с Т к=5 0 К под давлением ~ 150 кбар).

Из всего следует вывод,что сверхпроводимость представляет собой коллективный эффект,связанный со структурой всего образца.

Переход металла в сверхпроводящее состояние и обратно происходит при тех значениях температуры и напряженности магнитного поля, которые соответствуют точкам на кривой зависимости Н к от температуры (рис 1.)

Учитывая обратимость перехода и различие свойств металла в сверхпроводящем и нормальном состояниях, этот переход можно рассматривать как фазовый переход между двумя различными состояниями одного и того же вещества: n-фазой(нормальное состояние) и s-фазой (сверхпроводящее состояние).

Сверхпроводник в магнитном поле.

1. В 1933 г. Мейсснером было открыто одно из свойств сверхпроводников(эффект Мейсснера).Оказалось,что магнитное поле не проникает в толщу сверхпроводящего образца.Если этот образец при температурах более высоких,чем Тк, то в нем, как и во всяком нормальном металле,помещенном во внешнем поле.напряженность будет отличной от нуля. Не выключая внешнего магнитного поля, начнем постепенно понижать температуру.Тогда окажется,что в момент перехода в сверхпроводящее

состояние магнитное поле вытолкнется из образца и станет справедливым равенство В = 0 (В- магнитная индукция,равная, по определению,средней напряженности магнитного поля в веществе).При включении внешнего поля Н в веществе появляется отличная от нуля индукция В, равная В= μН. Коэффициент и называется магнитной проницаемостью вещества.При μ<1 наблюдается ослабление приложенного поля и В< Н.В сверхпроводниках В=0,что соответствует нулевой магнитной проницаемости.Это эффект идеального диамагнетизма. Если сверхпроводящий образец поместить во внешнее поле,то в поверхностном слое металла возникает стационарный

электрический ток,собственное магнитное поле которого противоположно приложенному полю.что в результате и приводит к нулевому значению индукции в толще образца.

Идеальный диамагнетизм сверхпроводников означает возможность протекания поверхностного стационарного тока,не испытывающего электрического сопротивления.

Наличие сопротивления привело бы к тепловым потерям и в отсутствие электрического поля-к быстрому затуханию тока.Эффект Мейснера и явление сверхпроводимости, т.е.полное отсутствие сопротивления,тесно связаны между собой и явлются следствием общей закономерности, которую и установила теория сверхпроводимости.

2. Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. При действии на сверхпроводник магнитного поля температура Тс снижается.Магнитное поле с напряженностью Нс,которое при данной температуре вызывает переход в-ва из сверхпроводящего состояния в нормальное,называется критическим полем.

Т.о.,металл можно перевести из сверхпроводящего состояния,воздействуя на сверхпроводник магнитным полем.Тем не менее,был обнаружен класс веществ,

сохраняющих свойство сверхпроводимости в мощных магнитных полях

и при сильных токах.

Изотермические свойства.

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств.

Электронная теплоемкость нормальных металлов с понижением температуры убывает по линейному закону с e ~Т. В сверхпроводниках – по экспоненциальному закону.

где а и b – постоянные,не зависящие от температуры величины.

Скачек теплоемкости

Изотермический переход из сверхпроводящего состояния в нормальное связан со скачкообразным изменением теплопроводности и теплоемкости.

Это универсальное свойство сверхпроводников.Различают теплопроводность,

связанную с движением электронов, и тепловой поток в решетке кристалла.

Коэффициент теплопроводности х можно представить в виде суммы

х=х эл +х реш.Электроны рассеиваются различными причинами(колебания решетки,примеси,другие электроны).Результирующая электронная теплопроводность Х эл вычисляется по правилу

Изотопический эффект.

В 1950 г. Максвелл,Рейндолс при исследовании ртути открыли,что сверхпроводимость возникает при взаимодействии электронов с решеткой кристалла.Электроны проводимости движутся в сверхпроводнике беспрепятственно-без “трения” об узлы кристаллической решетки.

В сверхпроводниках возникает взаимное притяжение электронов с образованием электронных пар.

Электрон проводимости е притягивает к себе ион I кристаллической решетки,смещая его из положения равновесия.При этом изменяется электрическое поле в кристалле- ион I создает электрическое поле,

действующее на электроны проводимости,в том числе и на электрон e 1

Взаимодействие е 1 и е 2 осуществляется с помощью кристаллической решетки.

Смещение иона под действием электрона приводит к тому,что электрон оказывается окруженным “облаком” положительного заряда, превышающего собственный отрицательный заряд электрона.Электрон вместе с этим “облаком”имеет суммарный положительный заряд и притягивается к другому электрону.

Интересно,что именно взаимодействие электронов с решеткой кристалла ответственно за появление сопротивления. При определенных условиях оно приводит к его отсутствию,т.е эффекту сверхпроводимости.Так было

расскрыто объяснение сверхпроводимости.

В 1957 г. Бардином,Купером,Шриффером была построена теория сверхпроводящего состояния.

Квантовая основа.

1.В квантовой теории металлов притяжение между электронами (обмен фононами)связывается с возникновением элементарных возбуждений решетки.

Электрон,движущийся в кристалле и взаимодействующий с другим электроном посредством решетки,переводит ее в возбужденное состояние.При переходе решетки в основное состояние излучается квант энергии звуковой частоты- фонон,который поглащается другим электроном.Притяжение между электронами можно представить как обмен электронов фононами,причем притяжение наиболее эффективно,если импульсы взаимодействующих электронов антипараллельны.

2.Возникновение сверхпроводящего состояния вещества связано с возможностью образования в металле связанных пар электронов.Проявление сил притяжения можно представить.В результате деформации решетки электрон оказываеся окруженным “облаком “положительного заряда, притягивающегося к электрону. Тогда такой электрон вместе с окружающим его облаком представляет собой положительно заряженную систему,

которая будет притягиваться к другому электрону.

При высоких температурах достаточно сильное интенсивное тепловое движение отбрасывает частицы друг от друга,размывает ионную “шубу“, что фактически уменьшает силы притяжения.При низких же температурах силы притяжения играют очень важную роль.

Возникновение межэлектронного притяжения не противоречит законам физики.Два электрона, несомненно, отталкиваются друг от друга,если находятся в пустоте.

В среде же сила их взаимодействия равна

(ε-δиэлектрическая проницаемость среды).Если среда такова,что ε <0, то одноименные заряды (в данном случае электроны) будут притягиваться.

Кристаллическая решетка и является той средой, которая делает отрицательной диэлектрическую проницаемость в сверхпроводнике.

3.Расстояние между электронами пары равно:

где h-постоянная Планка,u F -скорость электрона на уровне Ферми,

k – постоянная Больцмана, Т c –температура перехода в сверхпроводящее состояние.Оценка показывает,что δ=10 см,т.е.электроны,образующие пару,

находятся на расстоянии порядка 10 4 периодов кристаллической

решетки.Вся электронная система сверхпроводника представляет собой связанный коллектив,простирающийся на громадные, по атомным масштабам,

расстояния.

Если при сколь угодно низких температурах кулоновское отталкивание между электронами преобладает над притяжением,образующим пары,то вещество (металл или сплав) остается по своим электрическим свойствам нормальным.Если же при температуре Т происходит преобладание сил притяжения над силами отталкивания,то вещество переходит в cверхпроводящее состояние

4.Важнейшей особенностью связанного в пары коллектива электронов в сверхпроводнике является невозможность обмена энергией между электронами и решеткой малыми порциями,меньшими,чем энергия связи пары электронов.

Это означает, что при соударении электронов с узлами кристаллической решетки не изменяется энергия электронов и вещество ведет себя как сверхпроводник с нулевым удельным сопротивлением.

Квантомеханическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решетки или примесях.А это и означает отсутствие электрического сопротивления.

Условия сверхпроводимости.

1.Сверхпроводники I и II рода.

Когда магнитный поток проходит через проводник без потерь и когда энергия связана с поверхностями раздела между участками n-фазы и s-фазы (граница между двумя фазами всегда обладает поверхностной энергией.)

На рис. 5 а-сверхпроводник с идеальным диамагнетизмом;б-сверхпроводник в смешанном состоянии.Заштрихованные области соответствуют сверхпроводящему состоянию (s-фазе), незаштрихованные- нормальному (n-фазе).При толщине слоев s- фазы,меньшей глубины проникновения, магнитный поток пронизывает и сверхпроводящие слои(Н- напряженность внешнего магнитного поля).

Искажения плотности сверхпроводящих электронов не могут проявлятся на расстояниях,меньших длины когерентности ξ~ΔS.

В поверхностную энергию дают вклад эффекты,зависящие как от глубины проникновения λ,ςак и от длины когерентности ξ.Как было показано,вклад в поверхностную энергию отрицателен(т.к. при этом объем чистой s-фазы

уменьшается на величину порядка λS, где S-площадь поверхности s-фазы) и, следовательно, добавка к внутренней энергии сверхпроводника уменьшается на величину порядка λSH 2 /8π.Εсли выполняется условия ξ>λ(αолееточный расчет дает условие ξ>λ 1/2),тообразование слоистой структуры энеогетически невыгодно и сверхпроводник существует в виде сплошной s-фазы.

Такие сверхпроводники называются сверхпроводимостью I рода.К ним принадлежат почти все чистые сверхпроводники.Если же выполняется условие ξ<λ 1/2 ,то энергетически выгодно образование слоистой структуры и сверхпроводники находятся в смешанном состоянии.Такие сверхпроводники называются свехпроводимостью II рода.К ним относятся многие сверхпроводящие сплавы и сверхпроводники, загрязненные примесями.

2.Сверхпроводимость может разрушаться током..

Если сверхпроводник II рода поместить в сильное внешнее магнитное поле, то критический ток в нем окажется равным 0,т.е. протекание сквозь угодно малого тока будет сопровождаться тепловыми потерями.Возникает система вихревых нитей и при пропуске тока происходит их взаимодействие.Опытным путем доказано,что жесткие сверхпроводники выдерживают сильные магнитные поля,а благодаря неоднородностям структуры через них можно пропускать большие токи.

3.Созданы новые сверхпроводящие вещества, дающие возможность получать поля около 200 кгс. Перспектива открытий в этой области неограничена.

Применение сверхпроводимости.

Продолжается поиск материалов,позволяющих получать все более мощные магнитные поля. Соленоиды создают не просто сильные магнитные поля.Возможно получение однородных полей в достаточно большой области пространства,что весьма важно при проведении научных исследований,

посвященных изучению свойств вещества в магнитном поле.

Наиболее заманчиво применение сверхпроводников в обмотках соленоидов для получения сверхсильных магнитных полей- порядка 100 000э и выше. Сильные магнитные поля необходимы,например, при управлении плазменными пучками в установках для исследования и возможного получения управляемых термоядерных реакций и в современных ускорителях заряженных частиц высоких энергий.

В этом случае энергию надо затрачивать только на охлаждение обмоток до температур ниже критической.

Каждый элемент провода с током в такой обмотке находится в очень сильном магнитном поле соседних витков,поэтому целесообразно применять сверхпроводники II рода,выдерживающие большие магнитные поля. Для этих целей выявлены сверхпроводимость III рода(ниобий-цирконий или ниобий-олово).

Сверхпроводящие сплавы используются для получения сверхмощных постоянных магнитов. В отличие от обычного электромагнита сверхпров. не нуждается во внешнем источнике питания,поскольку протекающий в нем ток не испытывает электрического сопротивления.

Другим примером применения сверхпроводников является клистрон-управляющий элемент в электрических цепях.На проводник,по которому течет электрический ток, наматывается несколько витков также сверхпроводящей проволоки, но обладающей более высоким значением критического поля Н к.1Меняяток в витках,можно создать критическое поле в управляемом сверхпроводнике, что приведет к его “запиранию” вследствие потери им С.

Много исследований посвящается вопросу об использовании сверхпров. при создании вычислительных машин.Сверхпроводящий ток является незатухающим.Это позволяет использовать его в качестве идеального запоминающего устройства,хранящего большие и легко считываемые запасы информации.

Скорость “ вспоминания” сверхпроводящих устройств значительно превышает возможности человеческого мозга.Они в состоянии всего лишь за 10 -6 сек выбрать нужную информацию из 10 11 ее единиц.

В вычислительной технике используется двоичная система.Двойственность сверхпроводников(они могут находиться или в нормальном,или в сверхпроводящем состоянии),быстрота их перехода под действием темпера-

туры или магнитного поля из одного состояния в другое позволяют использовать их в качестве элементов вычислительных машин. И в качестве переключающих устройств,работающих с очень высокой скоростью при малых затратах мощности, сверхпроводники идеальны.

Одно из таких устройств –так называемый проволочный криотрон.

Слово ”криотрон” греческого происхождения (cryo- холод).Изобретен этот прибор американским ученым Баком.Прибор состоит из проволоки,

сделанной,например,из свинца или тантала, по которой протекает сверхпроводящий ток.Эта проволока называется клапаном.На нее намотана более тонкая –из ниобия.Катушка,образованная этим тонким проводом,

называется управляющей.При протекании по ней достаточно большого тока сверхпроводимость в клапане разрушается.

Ниобий был выбран в качестве материала,из которого изготовляется управляющий провод,по той простой причине,что сверхпров. сохраняетсся в нем при достаточно сильных магнитных полях.Критические поля свинца или тантала,образующих клапан,являются весьма малыми,и сверхпров.в них поэтому разрушается при пропускании в ниобиевой катушке достаточно слабого тока.

Сопротивление в клапане меняется при этом скачком от нуля до некоторого конечного значенитя.Уменьшением тока в управляемом проводе снова восстанавливается сверхпроводящие состояния свинца или тантала.

Скорость переключения в клиотронах достигает двух наносекунд

(2*10 -9 сек).Высокая скорость в сочетании с простотой устройства и лежит в основе использования сверхпроводящих криотронов в вычислительной технике.ЭВМ,использующая сверхпроводящие устройства,выделяется

своей необычной компактностью.

Вполне возможным является создание миниатюрного сверхпроводящего триода.Его можно представить себе состоящим всего из трех наклеенных друг на друга металлических пленок, причем роль сетки обычной радиолампы играет средняя полоска, в которой регулируется ток и создаваемое им магнитное поле.

Сверхпроводник,в толщу которого не проникает магнитное поле, всегда окружен магнитной “ подушкой”.

Эффект механического отталкивания используется для создания опор без трения.Сверхпроводящая сфера благодаря диамагнитному эффекту висит над кольцом,в котором циркулирует незатухающий ток.Сила тяжести

при этом уравновешивается магнитной “ подушкой”,создаваемой сверхпров. током.Оказывается,что могут “парить” довольно тяжелые предметы.Так,в одном из опытов был подвешен свинцовый цилиндр весом 5 кг.

Устройство, в котором используется описанное явление,называется сверхпроводящим подвесом.Такие подвесы могут использоваться в гироскопах,моторах и в ряде других устройств.Принцип механического отталкивания положен в основу создагния электрических машин,к.п.д. которых благодаря замечательным свойствам сверхпроводников равена 100%. В этих машинах ротор выполнен в виде шестиугольного сверхпроводящего

стаканчика.Два магнитика,вращающиеся по окружности статора,отталкивают от себя магнитной “подушкой” сверхпроводящий ротор.Последний при этом приходит во вращение, скорость которого доходит до 20 000 об/мин

и в принципе может быть увеличена до большого значения.

Самая заманчивая перспектива использования эффекта механического отталкивания связана с работами по созданию “сверхпроводящей “ железной дороги.Японцы первыми создали модель железной дороги на магнитной подушке с вагонами,в которых находятся сверхпроводящие магниты.Вагон весом 2 т и размером 4х1,5 х 0,8 м двигался над путепроводом со скоростью

на “магнитной подушке “ сможет двигаться со скоростью 500 км/ час!Эти разработки ведутся во всех странах Европы.

У нас разработан проект такой дороги между Петербургом и Москвой.

Это явление в лабораторных условиях рассмотрел в замечательном эксперименте В.К.Аркадьев,назвавший его “ гроб Магомета”.Над металличе-

ским кольцом, в котором циркулирует такой ток, поместить в сверхпроводящую сферу, то на ее поверхности индуцируется сверхпроводящий ток.Его возникновение вследствие диамагнитного эффекта приведет к появлению сил отталкивания между кольцом и сферой.В результате сфера оказывается висящей над кольцом на высоте,определяемой равенством силы

отталкивания и веса сферы.Подобный эффект механического отталкивания

наблюдается и в том случае, когда над сверхпроводящим кольцом помещается постоянный магнит,без видимой поддержки висящий над кольцом,в котором циркулируют индуцированные магнитом незатухающие сверхпроводящие токи.

Сверхпроводящие трансформаторы.Отсутствие в них тепловых потерь;сверхпроводящие трансформаторы при большой мощности (до 1 000 000 квт) оказываются значительно более компактыми по сравнению с обычными.

В них можно не использовать сталь в качестве магнитного материала. Создаваемые сверхпроводниками магнитные поля намного превосходят значения напряженности,реализуемые в стальных материалах.

В последнее время в радиотехнике начинают использовать сверхпроводящие объемные резонаторы.Добротность резонатора обратно пропорциональна

электрическому сопротивлению его стенок.Ясно,что применение сверхпроводников, не обладающих электрическим сопротивлением, является с этой точки зрения весьма перспективным. Так, обычный прямоугольный свинцовый резонатор при Т = 300 0 К и частоте 10 10 гц имеет добротность Q= 2*10 3 . Тот же резонатор, находящийся в сверхпроводящем состоянии (Т=4,2 0 К),характеризуется добротностью,достигающей Q= 4*10 8 .

Компактность мсожет использоваться в космическом корабле для

создания магнитной противорадиационной защиты.Космонавт должен взять в космос “ низкие температуры” и сверхпроводящий соленоид.

Квантование магнитного потока в сверхпроводниках используется для создания магнитомеров для измерения слабых магнитных полей.Приборы такого вида называются квидами.Они фиксируют изменения потока

Например, если площадь сечения сквида равна 0,1 см 2,то можно измерять поля ~10 -10 э!

Катушка с полем

переменного тока

Тонкая пленка

(~10 -6 cм толщиной)

Изображенный сквид представляет собой два тонких сверхпроводящих полуцилиндра, полученных напылением на катушку.Эти полуцилиндры соединены тонким мостиком, образующим слабую связь.Квантование этого магнитного потока приводит к ступенчатому характеру зависимости потока от внешнего магнитного поля.Это изменение потока генерирует сигнал в резонансном колебательном контуре.С помощью этих сигналов и регистрируются слабые изменения магнитного поля.

Сквиды используются для снятия магнитокардиограмм, т.е. для исследования сигналов от магнитного поля, создаваемого при работе сердца пациента.Сквид

располагается в криостате,на расстоянии нескольких сантиметров от сердца

пациента.Регистрируются резкие сигналы,идущие от сердца.Ясно,что этот метод важен для медицинских исследований.

Квантование магнитного потока может быть использовано для создания пространства,в котором вообще отсутствует магнитное поле.Если охладить цилиндр,внутри которого имеется слабое магнитное поле, до температуры ниже критической, то внутри цилиндра “заморозится” некоторый магнитный поток.Если после этого мы начнем постепенно увеличивать радиус цилиндра,то число квантов потока не изменится, но увеличение площади сечения повлечет за собой соответствующее уменьшение напряженности поля.Если использовать несколько вложенныхдруг в друга цилиндров.то описанным путем можно в конце концов добиться того, что во внутреннем цилиндре не будет содержаться ни одного кванта потока.

Таким образом, возникает область,не содержащая магнитного поля, т.е. создается идеальный магнитный экран.

Интересным прибором является также сверхпроводящий болометр.Он предназначается для измерения радиации в инфракрасной области спектра.

Основной частью такого болометра является тонкая проволока из сверхпроводника,находящаяся при температуре,близкой к критической. Под

действием падающей радиации, которая поглащается металлом,температура повышается и становится больше Тк.При этом сверхпроводимость разрушается,и в проволоке скачком восстанавливается нормальное сопротивление.

Это приводит к легко регистрируемому падению напряжения.Резкость перехода в нормальное состояние делает сверхпроводящий болометр весьма чувствительным прибором.Порог чувствительности его составляет

10 -10 –10- 12 вт.

Техническая сверхпроводимость находится в развитии и составляет часть технической физики.

Использованная литература

1.Иваноа Б.Н.Законы физики.М.: Высшая школа.1986.

2.Кресин В.З.Сверхпроводимость и сверхтекучесть.М.:Наука,1978.

3.Парселл Э.Электричество и магнетизм.М.:Наука,1985.

(Берклиевский курс физики).

4.Суорц Кл.Э.Необыкновенная физика обыкновенных явлений.

В сборнике “Успехи физических наук”.М.:Наука,1986.

5.Тилли Д.,Тилли Дж.Сверхтекучесть и сверхпроводимость,пер.с англ.

М.: Наука,1977.

6.Физика микромира,Малая энциклопедия.М.:Советская энциклопедия,

1980, с.335-352.

7.Шубин А.С.Курс общей физики.М.:Высшая школа,1976.

8.Яворский Б.М.,ДетлафА.А..Справочник по физике.М.:Наука,1985,с.417.

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются так называемые сверхпроводники II рода , в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитого поля H c2 .

Первым промышленным применением сверхпроводимости было создание сверхпроводящих магнитов с высокими критическими полями.

Следующее практическое применение сверхпроводимости относится к технике чувствительных электронных приборов. Экспериментальные образцы приборов с контактом Джозефсона могут обнаруживать напряжения порядка 10 -15 Вт. Техника сверхпроводимости и особенно контакты Джозефсона оказывают все большее влияние на метрологию. С помощью джозефсоновских контактов создан стандарт 1 В. Был разработан также первичный термометр для криогенной области, в которой резкие переходы в некоторых веществах используются для получения реперных (постоянных) точек температуры. Новая техника используется в компараторах тока, для измерений радиочастотной мощности и коэффициента поглощения, а также для измерений частоты. Она применяется также в фундаментальных исследованиях таких, как: измерение дробных зарядов атомных частиц и проверка теории относительности.

Сверхпроводимость будет широко использоваться в компьютерных технологиях. Здесь сверхпроводящие элементы могут обеспечивать очень малые времена переключения, ничтожные потери мощности при использовании тонкопленочных элементов и большие объемные плотности монтажа схем. Разрабатываются опытные образцы тонкопленочных джозефсоновских контактов в схемах, содержащих сотни логических элементов и элементов памяти.

Наиболее интересные возможные промышленные применения сверхпроводимости связаны с генерированием, передачей и использованием электроэнергии. Еще одно возможное применение сверхпроводников – в мощных генераторах тока и электродвигателях малых размеров. Обмотки из сверхпроводящих материалов могли бы создавать огромные магнитные поля в генераторах и электродвигателях, благодаря чему они были бы значительно более мощными, чем обычные машины. Опытные образцы давно уже созданы, а керамические сверхпроводники могли бы сделать такие машины достаточно экономичными. Рассматриваются также возможности применения сверхпроводящих магнитов для аккумулирования электроэнергии, в магнитной гидродинамике и для производства термоядерной энергии.


Контрольные вопросы:

1. Какие явления наблюдаются при сверхпроводимости?

а. Скачок удельной теплоемкости.

б. Небольшое изменение объема.

в. Резкое уменьшение поглощения ультразвука.

г. Все вышеперечисленные.

2. Каким физическими свойствами обладает вещество, находящееся в сверхпроводящем состоянии?

а. Выталкивание электрического поля.

б. Высокой напряженностью электрического поля данного вещества.

в. Высокой магнитной проницаемостью.

г. Выталкиванием магнитного поля, идеальной проводимостью.

3. При каких условиях разрушается сверхпроводящее состояние?

а. При пропускании через сверхпроводник тока такой величины, при которой на поверхности образца магнитное поле, вызванное этим током, становится равным критическому.

б. При воздействии магнитного поля достаточной вели­чины, т.е. критической.

в. Все вышеперечисленные.

4. Что такое проводник второго рода?

а. Тела, в которых электрический заряд может перемещаться по всему его объёму.

б. Перенесение в них зарядов не сопровождается химическими превращениями.

в. Перенесение в них зарядов ведёт к химическим изменениям.

г. Тела в которых практически отсутствуют свободные заряды.

5. Каковы результаты исследования явления высокотемпературной сверхпроводимости?

а. В 1986 г. критическая температура перехода в сверхпроводящее состояние понизилась более чем на 100° k.

б. В 1986 г. критическая температура перехода в сверхпроводящее состояние повысилась более чем на 100° k.

в. В 1989 г. критическая температура перехода в сверхпроводящее состояние не изменилась.

г. В 1989 г. критическая температура перехода в сверхпроводящее состояние повысилась более чем на 100° k.

Вопросы различных применений сверхпроводимости стали обсуждаться практически сразу же после открытия этого поразительного явления. Еще Камерлинг - Оннес считал, что с помощью сверхпроводников можно создавать экономичные установки для получения сильных магнитных полей. Однако реальное использование сверхпроводимости началось лишь в конце 50-х - начале 60-х годов. В настоящее время уже работают сверхпроводящие магниты различных размеров и формы. Их применение вышло за рамки чисто научных исследований, и сегодня они широко используются в лабораторной практике, в ускорительной технике, томографах, установках для управляемой термоядерной реакции. С помощью сверхпроводимости стало возможным повысить чувствительность некоторых измерительных приборов. Особенно следует подчеркнуть влияние сквидов в технику, в том числе и в современную медицину. Сверхпроводимость стала большой отдельной отраслью промышленности. Открытие высокотемпературной сверхпроводимости создало предпосылки к более широкому внедрению в повседневную практику различных сверхпроводящих устройств.

Наибольшее применение сверхпроводники нашли в настоящее время в области создания сильных магнитных полей. Современная промышленность производит из сверхпроводников второго рода разнообразные провода и кабели, используемые для изготовления обмоток магнитов. Преимущества сверхпроводящих магнитов очевидны. С помощью сверхпроводников получают значительно более сильные магнитные поля, чем при использовании железных магнитов. Сверхпроводящие магниты являются и более экономичными.

Следует отметить, что максимально возможное магнитное поле, создаваемое сверхпроводящими магнитами, ограничено верхним пределом для плотности тока (критическими токами). Критический ток определяется, как правило, технологией приготовления проводников, а не верхним критическим полем материала.

Сверхпроводящие магниты обладают еще одним преимуществом по сравнению с обычными. Они могут работать в короткозамкнутом режиме, когда поле заморожено в объеме, что обеспечивает практически не зависящую от времени стабильность поля. Это свойство чрезвычайно важно при измерениях в веществе ядерного магнитного и электронного парамагнитного резонансов, в томографах и т.п.

В сверхпроводящих соленоидах с большим объемом поля запасенная энергия достаточно велика. В случае перехода катушки в нормальное состояние эта энергия превратиться в тепло. Если при переходе в нормальное состояние вся энергия бесконтрольно превратиться в тепло, то это может привести к полному разрушению магнита. Во избежании таких катастрофических последствий самопроизвольного перехода катушки в нормальное состояние соленоиды, в особенности большие, снабжаются специальными защитными устройствами, предназначенными для быстрого вывода запасенной энергии.

Очень заманчиво попытаться использовать сверхпроводники в электротехнике и энергетике. Ведь в настоящее время потери на джоулево тепло в проводящих проводах оцениваются величиной 30 - 40, то есть более трети всей производимой энергии тратиться даром - на «отопление» Вселенной. Если же передавать электроэнергию по сверхпроводящим проводам с нулевым сопротивлением, то таких потерь не будет вообще. Это равносильно увеличению выработки электроэнергии более чем на треть. На основе сверхпроводников можно создавать электродвигатели и генераторы с высоким КПД и другими улучшенными рабочими характеристиками.

Если над металлическим кольцом с током поместить сверхпроводящую сферу, то на её поверхности в силу эффекта Мейснера индуцируется сверхпроводящий ток, что приводит к появлению сил отталкивания между кольцом и сферой, и сфера висит над кольцом. Подобный эффект механического отталкивания наблюдается и в том случае, когда над сверхпроводящим кольцом помещается постоянный магнит. Этот эффект, часто используемый для демонстраций явления сверхпроводимости, получил название «гроб Магомета», ибо, по преданию, гроб Магомета висел в пространстве без всякой поддержки.

Явление механического отталкивания применяется, в частности, для создания подшипников и опор без трения. Заманчива перспектива использования левитации сверхпроводника в транспорте. Речь идет о создании поезда на магнитной подушке, в котором будут полностью отсутствовать потери на трении о колею дороги. Модель такой сверхпроводящей дороги длиной 400м была создана в Японии еще в 70-х годах. Расчеты показывают, что поезд на магнитной подушке сможет развивать скорость до 500 км/ч. такой поезд будет «зависать» над рельсами на расстоянии 2 - 3 см, что и даст ему возможность разгоняться до указанных скоростей.

Широко используется в настоящее время сверхпроводящие, объемные резонаторы. С одной стороны, такие сверхпроводящие резонаторы позволяют получить высокую частотную избирательность. С другой стороны, сверхпроводящие резонаторы широко используются в сверхпроводящих ускорителях, позволяя существенно уменьшить мощность, требуемую для создания ускоряющего электрического поля. Как правило, сверхпроводящие резонаторы изготовляются из свинца либо из ниобия.

Одно из самых распространенных направлений прикладной сверхпроводимости - использование сквидов как в научных исследованиях, так и в различных технических областях. градиометры на основе сквидов реагируют чрезвычайно слабые магнитные поля, поэтому их уже сегодня эффективно используют в медицине и биологии для исследования полей живых организмов и человека. В геологии сквиды применяются для определения изменения силы гравитации в различных точках Земли. Такая информация нужна для поиска полезных ископаемых.

Наиболее перспективными направлениями широкого использования высокотемпературных сверхпроводников считаются криоэнергетика и криоэлектроника. В криоэнергетике уже разработана методика приготовления достаточно длинных проводов (до 1000 метров) проводов и кабелей на основе висмутовых ВТСП - материалов. Этого уже хватает для изготовления небольших двигателей со сверхпроводящей обмоткой, сверхпроводящих трансформаторов, индуктивностей и т.п. На основе этих материалов уже созданы сверхпроводящие соленоиды, обеспечивающие при температуре жидкого азота (77К) магнитные поля порядка 10 000Гс.

Темп технологических и прикладных исследований очень высок, так что, возможно, промышленность освоит выпуск изделий из высокотемпературных сверхпроводников раньше, чем будет достоверно выяснена природа сверхпроводимости в металлооксидных соединениях. Для технологии в первую очередь важен сам факт существования материалов, сверхпроводящих при температуре жидкого азота. Однако целенаправленное и осмысленное движение вперед, в том числе технологической сфере, невозможно без всестороннего исследования уже известных ВТСП, без понимания всех тонкостей высокотемпературной сверхпроводимости как интереснейшего физического явления. Тем более это относится к поиску новых сверхпроводников.

Я привела лишь несколько примеров практического использования сверхпроводимости. Не меньшее значение, конечно, имеют проблемы передачи электроэнергии на большие расстояния без потерь, создания накопителей энергии, защиты космических аппаратов от космического излучения и т.д. примеров научного и технического применения сверхпроводимости множество, но подобное изучение этих вопросов выходит за рамки данной работы.