Жидкие вещества и их свойства. Жидкое состояние вещества

Итак, вы по каким-либо причинам решили приобрести электронную сигарету. Возможно, последовали веяниям моды. Может, пробуете таким способом бросить курить. Отлично – девайс выбрали, купили. Осталось дело за малым – выбрать жидкость. Но на самом деле этот момент даже более важен, чем выбор самой сигареты. Именно жидкость определяет вкусовые ощущения, испытываемые вами во время вдыхания пара.

Чтобы не растеряться при выборе жидкости для вейпа, нужно уметь правильно ее подобрать. Перед новичком стоит целый ряд вопросов: как определиться с крепостью? какую марку выбрать? с какого вкуса начать в первую очередь? Особо экстремальных новичков волнует даже такой вопрос: что будет если выпить жижу для вейпа?

Определившись с выбором электронной сигареты для новичка, следующим решением будет выбор жидкости для электронных сигарет.

Выбирая жидкость, нужно особо уделить внимание трем критериям:

  1. содержание глицерина;
  2. количество никотина;
  3. вкус.

Считается, что чем больше концентрации глицерина в составе жидкости для вейпинга, тем гуще и насыщенные будет выдуваемый пар. Если же в составе больше пропиленгликоля, вы не получите большого облака пара, зато сможете насладиться насыщенным вкусом.

Жидкости для электронных сигарет бывают как безникотиновые, так и с различным содержанием никотина. Если вы не хотите нанести вред здоровью, лучше выбрать первый вариант.

Вкус подбирается исключительно исходя из ваших предпочтений. Магазины товаров для вейпинга предлагают широкий ассортимент вкусов: фруктовых, ментоловых, десертных, ягодных. Людям, желающим бросить курить, сначала можно выбрать жидкость с табачным ароматом. Порой встречаются и очень необычные вкусы жидкостей: аромат пельменей, колбасы или сельдерея не оставят равнодушными заядлых вейперов, желающих получить новые ощущения.

Элементы, содержащиеся в жидкости

Все жидкости для электронных сигарет состоят из следующих компонентов:

  • глицерин;
  • пропиленгликоголь;
  • ароматизатор;
  • никотин.

Основные компоненты – это глицерин и пропиленгликоль. Они сочетаются в разных пропорциях, чаще всего 30-40% одного вещества на 50-60% другого. Для разбавления используется 10% дистилированной воды.

Чем выше концентрация глицерина в составе, тем больше облака пара. Если вы приобрели электронную сигарету с сабомным испарителем и намткой для выдувания объемных облаков пара, то вам стоит обратить особое внимание именно на жидкости с преобладающим содержанием глицерина.

При желании можно мешать одну жидкость с другой, создавая новые сочетания вкусов и добиваясь для себя оптимального содержания основных компонентов. Так что на вопрос можно ли смешивать разные жидкости ответ утвердительный.

Зачем нужен никотин в жидкости для электронной сигареты

Никотин в нужен для удовлетворения потребности насыщения этим веществом. Если вы новичок, то не покупайте изначально жидкость с высоким содержанием никотина (больше 18 мг). С непривычки с организмом может случиться отравление никотином.

Как определить нужную для себя крепость

Выбрать крепость жижи для вейпа можно исходя из следующей таблицы:

Крепость (мг /мл) Кому подойдет
0 Подойдет для некурящих, а также для тех, кто бросает курить
6-8 Оптимальная крепость для новичков. Используется также при отказе от курения.
11-12 Годится людям, курящим либо очень редко, либо только легкие сигареты
16-18 Для того чтобы заменить курение одной пачки обычных сигарет обычно используется эта крепость
22-24 Подойдет ярым курильщикам, выкуривающем более пачки в день
36 Применяется для разведения слабых растворов. Лучше не пробовать эту жидкость в неразбавленном виде.

Начинающему, даже если он заядлый курильщик, не нужно даже пробовать сразу покупать крепкую жидкость. На многих устройствах с сабомными испарителями крепость ощущается значительно сильнее, чем указано на бутыльке флакона. Так что ориентироваться нужно не только на приведенную таблицу, но и на тип электронной сигареты. Всегда лучше постепенно увеличивать содержание никотина, чтобы подобрать оптимальную для вашего организма концентрацию.

Сколько жидкости требуется

Для заправки обычно используются флакончики объемом 10 и 30 мл. На расход жидкости влияют такие факторы как частота и интенсивность парения, а также устройство самого девайса. В среднем, флакона на 30 мл хватает на 1-1,5 недели. Новички обычно расходуют намного меньше, а опытные парильщики – больше. Все это говорит о том, что расход жидкости для электронных сигарет индивидуален для каждого человека.

Обзор брендов

Теперь, когда вы имеете представление о том, как подобрать правильно жидкость для электронных сигарет исходя из индивидуальных предпочтений, можно получить больше информации о брендах-изготовителях жидкостей.

Среди российских марок самыми популярными являются Armango6 SafeLiq и Red Smokers Corsar . Последние два варианта не ударят по кошельку, но в то же время имеют богатый выбор вкусов разной насыщенности.

Китайские бренды жидкостей для электронных сигарет: Vardex, Dekang, Joyetech . Последняя является мировым лидером среди брендов, продающие средства для заправки электронных сигарет. Новые вкусы, изготавливаемые этой фирмой, быстро становятся популярными.

Среди брендов премиум-класса стоит отметить Flovour Art и Savourea . Жидкости производятся в европейских фармацевтических лабораториях и имеют ни с чем не сравнимый вкус.

Электронные сигареты – отличная альтернатива традиционным сигаретам во время промежуточного этапа перед полным отказом от курения. Помните о том, что даже заменив обычные сигареты на электронные устройства, вы не избавитесь от вредной привычки. Даже низкое содержание никотина в жидкостях наносит вред здоровью, пусть даже менее значительный, чем обычные сигареты. Соблюдайте в «парении» меру, тем самым старайтесь полностью освободиться от пагубной привычки.

В чем подавать шампанское и в какие бокалы наливать вино или коктейль?

Классические напитки: шампанское, красное и , ликер, виски или коньяк требуют определенной подачи. И это вовсе не прихоть ревнителей этикета. В правильно выбранном бокале напиток лучше раскрывает свой вкус. Не веришь?

Проведем простой эксперимент: сухое красное вино, мерло или каберне, налей в стеклянный бокал и в фарфоровую чашку. Дай постоять 5 минут, закрой глаза и поочередно пригуби вино. Удивительно, но его вкус будет сильно различаться. Дело в том, что вкусовые рецепторы в разных местах языка по-разному воспринимают вкус.

За кислый вкус отвечают рецепторы на задней части языка. Именно туда попадет шампанское, выпитое из высокого бокала. Вино из широкого сосуда в первую очередь попадает на кончик языка, рецепторы которого настроены на восприятие сладкого.

Стекло - лучший материал для винной посуды. Но если бокалы для вина должны быть тонки- ми, крепким напиткам требуется посуда с толстыми стенками.

Какой набор винной посуды должен быть в доме?

Бокал для красного вина по форме напоминает широкую головку тюльпана. Такая форма позволяет вину дышать. Красное вино подают, как правило, не охлаждая, комнатной температуры.

Бокал для белого вина имеет меньший объем и более удлиненную форму, чтобы предварительно охлажденный напиток не успел нагреться, пока его пьют.

Бокал Hurricanes предназначен для тропических коктейлей со льдом, украшенных экзотическими фруктами.

Стакан для виски из толстого стекла называют old fashioned, что в переводе означает “старомодный”. Напиток охлаждается, а пальцы не мерзнут.

Бокал для коньяка имеет низкую ножку и широкую чашу. Напиток постепенно нагревается от руки и полнее отдает свой аромат.

Рюмка для водки или текилы объемом § 50 мл. Наливают в нее ровно на один глоток. Наливать напиток до краев считается дурным тоном.

Бокал для мартини традиционно делают на высокой ножке, так как изначально о мартини подавали без льда и таким образом защищали от тепла руки.

Фужер для шампанского высокий и узкий. Пена в нем будет высокой, а игра пузырьков продолжительной.

Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения - это квантовые жидкости и жидкие кристаллы .) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).

Все жидкости принято делить на чистые жидкости и смеси . Некоторые смеси жидкостей имеют большое значение для жизни: кровь , морская вода и др. Жидкости могут выполнять функцию растворителей .

Физические свойства жидкостей

  • Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу , то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести : достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

  • Сохранение объёма

Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа , между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля , справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0°С до приблизительно 4°С.

  • Вязкость

Кроме того, жидкости (как и газы) характеризуются вязкостью . Она определяется как способность оказывать сопротивление перемещению одной из части относительно другой - то есть как внутреннее трение.

Когда соседние слои жидкости движутся относительно друг друга, неизбежно происходит столкновение молекул дополнительно к тому, которое обусловлено тепловым движением . Возникают силы, затормаживающие упорядоченное движение. При этом кинетическая энергия упорядоченного движения переходит в тепловую – энергию хаотического движения молекул.

Жидкость в сосуде, приведённая в движение и предоставленная самой себе, постепенно остановится, но её температура повысится.

  • Образование свободной поверхности и поверхностное натяжение

Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую - газообразная (пар), и, возможно, другие газы, например, воздух.

Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела - силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.

Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится "окружить" себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшится.

Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму - например, капли воды в невесомости.

Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности. (См. Поверхностное натяжение .)

  • Испарение и конденсация
  • Диффузия

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

  • Перегрев и переохлаждение

Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи .

Переохлаждение - охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние . Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.

  • Волны плотности

Хотя жидкость чрезвычайно трудно сжать, тем не менее, при изменении давления её объем и плотность всё же меняются. Это происходит не мгновенно; так, если сжимается один участок, то на другие участки такое сжатие передаётся с запаздыванием. Это означает, что внутри жидкости способны распространятся упругие волны , более конкретно, волны плотности. Вместе с плотностью меняются и другие физические величины, например, температура.

Если при распространении волны́ плотность меняется достаточно слабо, такая волна называется звуковой волной, или звуком .

Если плотность меняется достаточно сильно, то такая волна называется ударной волной . Ударная волна описывается другими уравнениями.

Волны плотности в жидкости являются продольными, то есть плотность меняется вдоль направления распространения волны. Поперечные упругие волны в жидкости отсутствуют из-за несохранения формы.

Упругие волны в жидкости со временем затухают, их энергия постепенно переходит в тепловую энергию. Причины затухания - вязкость, "классическое поглощение", молекулярная релаксация и другие. При этом работает так называемая вторая, или объёмная вязкость – внутреннее трение при изменении плотности. Ударная волна в результате затухания через какое-то время переходит в звуковую.

Упругие волны в жидкости подвержены также рассеянию на неоднородностях, возникающих в результате хаотического теплового движения молекул.

  • Волны на поверхности

Если сместить участок поверхность жидкости от положения равновесия, то под действием возвращающих сил поверхность начинает двигаться обратно к равновесному положению. Это движение, однако, не останавливается, а превращается в колебательное движение около равновесного положения и распространяется на другие участки. Так возникают волны на поверхности жидкости .

Если возвращающая сила - это преимущественно силы тяжести, то такие волны называются гравитационными волнами (не путать с волнами гравитации). Гравитационные волны на воде можно видеть повсеместно.

Если возвращающая сила - это преимущественно сила поверхностного натяжения, то такие волны называются капиллярными.

Если эти силы сопоставимы, такие волны называются капиллярно-гравитационными.

Волны на поверхности жидкости звтухают под действием вязкости и других факторов.

  • Сосуществование с другими фазами

Формально говоря, для равновесного сосуществования жидкой фазы с другими фазами того же вещества - газообразной или кристаллической - нужны строго определённые условия. Так, при данном давлении нужна строго определённая температура. Тем не менее, в природе и в технике повсеместно жидкость сосуществует с паром, или также и с твёрдым агрегатным состоянием - например, вода с водяным паром и часто со льдом (если считать пар отдельной фазой, присутствующей наряду с воздухом). Это объясняется следующими причинами.

Неравновесное состояние. Для испарения жидкости нужно время, пока жидкость не испарилась полностью, она сосуществует с паром. В природе постоянно происходит испарение воды, также как и обратный процесс - конденсация.

Замкнутый объём. Жидкость в закрытом сосуде начинает испаряться, но поскольку объём ограничен, давление пара повышается, он становится насыщенным ещё до полного испарения жидкости, если её количество было достаточно велико. При достижении состояния насыщения количество испаряемой жидкости равно количеству конденсируемой жидкости, система приходит в равновесие. Таким образом, в ограниченном объёме могут установиться условия, необходимые для равновесного сосуществования жидкости и пара.

Присутствие атмосферы в условиях земной гравитации. На жидкость действует атмосферное давление (воздух и пар), тогда как для пара должно учитываться практически только его парциальное давление . Поэтому жидкости и пару над её поверхностью соответствуют разные точки на фазовой диаграмме, в области существования жидкой фазы и в области существования газообразной соответственно. Это не отменяет испарения, но на испарение нужно время, в течение которого обе фазы сосуществуют. Без этого условия жидкости вскипали бы и испарялись очень быстро.

Теория

Механика

Изучению движения и механического равновесия жидкостей и газов и их взаимодействию между собой и с твёрдыми телами посвящён раздел механики - гидроаэромеханика (часто называется также гидродинамикой). Гидроаэромеханика - часть более общей отрасли механики, механики сплошной среды .

Гидромеханика - это раздел гидроаэромеханики, в котором рассматриваются несжимаемые жидкости. Поскольку сжимаемость жидкостей очень мала, во многих случаях ей можно пренебречь. Изучению сжимаемых жидкостей и газов посвящена газовая динамика .

Гидромеханика подразделяется на гидростатику , в которой изучают равновесие несжимаемых жидкостей, и гидродинамику (в узком смысле), в которой изучают их движение.

Движение электропроводных и магнитных жидкостей изучается в магнитной гидродинамике . Для решения прикладных задач применяется гидравлика .

Основной закон гидростатики - закон Паскаля .

2. Жидкости из двухатомных молекул, состоящих из одинаковых атомов (жидкий водород , жидкий азот). Такие молекулы обладают квадрупольным моментом .

4. Жидкости, состоящие из полярных молекул, связанных диполь-дипольным взаимодействием (жидкий бромоводород).

5. Ассоциированные жидкости, или жидкости с водородными связями (вода , глицерин).

6. Жидкости, состоящие из больших молекул, для которых существенны внутренние степени свободы .

Жидкости первых двух групп (иногда трёх) обычно называют простыми. Простые жидкости изучены лучше других, из непростых жидкостей наиболее хорошо изучена вода. В эту классификацию не входят квантовые жидкости и жидкие кристаллы , которые представляют собой особые случаи и должны рассматриваться отдельно.

Статистическая теория

Наиболее успешно структура и термодинамические свойства жидкостей исследуются с помощью уравнения Перкуса-Йевика.

Если воспользоваться моделью твёрдых шаров, то есть считать молекулы жидкости шарами с диаметром d , то уравнение Перкуса-Йевика можно решить аналитически и получить уравнение состояния жидкости:

где n - число частиц в единице объёма, - безразмерная плотность. При малых плотностях это уравнение переходит в уравнение состояния идеального газа : . Для предельно больших плотностей, , получается уравнение состояния несжимаемой жидкости: .

Модель твёрдых шаров не учитывает притяжение между молекулами, поэтому в ней отсутствует резкий переход между жидкостью и газом при изменении внешних условий.

Если нужно получить более точные результаты, то наилучшее описание структуры и свойств жидкости достигается с помощью теории возмущений . В этом случае модель твёрдых шаров считается нулевым приближением, а силы притяжения между молекулами считаются возмущением и дают поправки.

Кластерная теория

Одной из современных теорий служит «Кластерная теория» . В её основе заключена идея, что жидкость представляется как сочетание твёрдого тела и газа. При этом частицы твёрдой фазы (кристаллы, двигающиеся на короткие расстояния) располагаются в облаке газа, образуя кластерную структуру . Энергия частиц отвечает распределению Больцмана , средняя энергия системы при этом остаётся постоянной (при условии её изолированности). Медленные частицы сталкиваются с кластерами и становятся их частью. Так непрерывно изменяется конфигурация кластеров, система находится в состоянии динамического равновесия. При создании внешнего воздействия система будет вести себя согласно принципу Ле Шателье . Таким образом, легко объяснить фазовое превращение.

Вермут – это крепленое вино, которое было известно и популярно еще во времена СССР. Но тогда настоящий качественный алкогольный напиток было практически недостать, он изготавливался из низкокачественных отечественных винных материалов. На сегодняшний день все изменилось и теперь он относится к качественным напиткам. Знаменитые винодельческие компании занимаются производством вермутов, они дорожат своей репутацией, поэтому качество вина очень высокое, в отличие от советского продукта. Родиной вермута является итальянский город Турин, который знаменит своим виноградом с чудесным мускатным вкусом. Там же росли ароматные, пряные травы. Средиземноморское жаркое солнце заставляло пряные травы источать сильный аромат, который смешивался с ароматом винограда. Природа сама подсказывала человеку, что необходимо как-то умело сочетать эти компоненты. В итоге получилось прекрасное вино, имеющее необыкновенный тонкий аромат и самобытный вкус.

Для ароматизации в алкогольный напиток добавляют лекарственные растения и пряные травы. Обычно это экстракт альпийской полыни, доля которого составляет примерно 50% от всех ароматических компонентов вина. В состав добавляют также мяту, кардамон, мускатный орех, тысячелистник, девясил, дягиль, зверобой, имбирь, ромашка, мелисса. Разнообразный набор трав обогащает вино самыми разными оттенками вкуса, поэтому напиток получается терпкий и душистый, в нем горечь сочетается со сладостью.

К основным разновидностям вермута относят:

  • Сухой (сахара в таком напитке содержится до 4%).
  • Белый (сахар от 5 до 15%).
  • Красный сладкий (сахара больше 15%).
  • Розовый (с содержанием сахара от 10 до 17%).
  • Горький, с минимальным содержанием сахара (2,5 – 2,8%), который является дежистивом в отличие от прочих вермутов, которые являются аперитивами.

Как правильно пить вермут?

Если говорить о культуре употребления такого напитка, то стоит выделить несколько пунктов.

Во что наливают?

Многие люди пьют этот напиток из треугольных бокалов, которые предназначены для мартини. Но классический вариант предполагает использование стакана с толстым дном, который предназначен также и для виски (тумблер).

Как пьют?

Так как вермут довольно крепкий напиток, то его пьют мелкими глотками. Это связано с физиологией человека. Если быстро выпивать бокал за бокалом, то это спровоцирует страшный похмельный синдром с жуткой мигренью. Все-таки в составе имеются самые разнообразные травы, которые оказывают на организм тонизирующее действие.

Чем разбавляют?

Обычно напиток ничем не разбавляют, но многие люди предпочитают класть в него лед, разбавлять водой или соком. Лучше всего подходят соки цитрусовых, так оттеняется сладость. Сухой вермут пьют только в чистом виде, А сладкий вермут разбавляют джином, водкой, коньяком, соком лимона. Можно сочетать с гранатовым сиропом, вишневой водкой. На его основе делается более 500 видов коктейлей. Самыми лучшими пропорциями считаются пропорции один к одному или два к одному. То есть берется одна часть «разбавочного» напитка и одна часть вермута. Бьянко разбавляют лимонадами, содовой, тоником, благодаря которым можно сбалансировать вкус. Вермут имеет слишком резкий вкус и запах, поэтому в бокал добавляют кубики льда, чтобы смягчить его характеристики, сделать более мягким и сдержанным. Если добавить сок или воду, то напиток станет нежнее. Сок апельсина или лимона способен придать приятную кислинку, разнообразить его вкус.

Чем закусывают?

Можно закусывать салатами и мясными закусками, фруктами, крекерами, орешками, твердым сыром. В СССР за неимением большого выбора продуктов, такое вино закусывали курицей, пирожками, бутербродами. Может показаться странным, но в Италии, родине вермута, до сих пор подают к этому напитку бутерброды. Также можно закусывать оливками, маслинами, несладкими закусками, горьким шоколадом. Лучше не закусывать сладкими фруктами, ягодами, десертами, так как напиток будет казаться приторно-сладким. Универсальным вариантом закуски являются овощные, мясные салаты, морепродукты, ветчина. Битер с крепостью 25% сочетается с отварной картошкой и жареным мясом. Если закусывать бутербродами, то следует отдавать предпочтение тем, которые готовят в странах Средиземноморья. Например, на кусочек хлеба намазать переспелый авокадо и сверху положить ломтик лосося. Или сделать бутерброд из хлеба, листа салата, ветчины и маслин. Такие бутерброды оттеняют вкус напитка.

Температура подачи

Важно знать какой температуры должен быть алкоголь при подаче, чтобы его было приятно пить. Так сухой вермут и Бьянко пьют охлажденным (около 8 или 12 градусов). Красные виды напитка употребляют комнатной температуры. Для этого бутылку заранее открывают и дают вину подышать, чтобы оно прогрелось и раскрыло весь свой букет ароматов.

Еще немного тонкостей употребления

  1. Напиток не предназначается для застолий. Он нужен для поднятия настроения, улучшения аппетита. Является прекрасным дополнением к ужину.
  2. Закуски к вермуту подаются в зависимости от обстоятельств. Так если он играет роль аперитива, то его подают с оливками, сыром твердых сортов, солеными крекерами, креветками. Если же подается напиток к сладкому столу, то лучше сочетать его с ананасами, горьким шоколадом, апельсинами, мандаринами, грейпфрутами.
  3. В середине застолья вермуты не принято пить, однако, если такое случилось, то Розе сочетается с запеченной курицей, Россо хорошо дополнит ветчина.
  4. В малых количествах вермуты обладают тонизирующим действием, если напиток подогреть до 80 градусов, добавить меда, а затем охладить до комнатной температуры, то получается лекарство от кашля.

Во время советской эпохи сложился стереотип, что вермут – это алкоголь сомнительного качества. Его готовили из низкосортных вин и пряными травами маскировали полное отсутствие качества. Но на самом деле это напиток, к созданию которого, по легенде, приложил руку сам Гиппократ. Сегодня можно наслаждаться его качеством, которое не идет ни в какое сравнение с прежним советским «пойлом». Главное в этом деле – найти хорошего производителя.

В повседневной жизни мы постоянно сталкиваемся с тремя состояниями вещества - жидким, газообразным и твердым. О том, что представляют собой твердые тела и газы, мы имеем довольно ясное представление. Газ - совокупность молекул, которые движутся беспорядочно по всем направлениям. Все молекулы твердого тела сохраняют взаимное расположение. Они совершают только незначительные колебания.

Особенности жидкого вещества

А что же представляют собой жидкие вещества? Основной их особенностью является то, что, занимая промежуточное положение между кристаллами и газами, они сочетают в себе определенные свойства двух этих состояний. Например, для жидкостей, так же как и для твердых свойственно наличие объема. Однако в то же время жидкие вещества, так же как и газы, принимают форму сосуда, в котором находятся. Многие из нас полагают, что у них нет своей собственной формы. Однако это не так. Естественная форма любой жидкости - шар. Сила тяжести обычно мешает ей принять эту форму, поэтому жидкость либо принимает форму сосуда, либо растекается по поверхности тонким слоем.

По своим свойствам жидкое состояние вещества особенно сложно, что обусловлено промежуточным его положением. Оно начало изучаться еще со времен Архимеда (2200 лет назад). Однако анализ того, как ведут себя молекулы жидкого вещества, до сих пор является одной из наиболее трудных областей прикладной науки. Общепризнанной и вполне законченной теории жидкостей все еще нет. Однако кое-что об их поведении мы можем сказать вполне определенно.

Поведение молекул в жидкости

Жидкость - что-то такое, что может течь. Ближний порядок наблюдается в расположении ее частиц. Это означает, что расположение соседей, ближайших к ней, по отношению к любой частице является упорядоченным. Однако по мере того, как она удаляется от других, положение ее по отношению к ним делается все менее упорядоченным, а затем порядок и вовсе исчезает. Жидкие вещества состоят из молекул, которые движутся намного более свободно, чем в твердых телах (а в газах - еще свободнее). В течение определенного времени каждая из них устремляется то в одну сторону, то в другую, не удаляясь от своих соседей. Однако молекула жидкости время от времени вырывается из окружения. Она попадает в новое, переходя в другое место. Здесь снова в течение определенного времени она совершает подобные колебанию движения.

Вклад Я. И. Френкеля в изучение жидкостей

Я. И. Френкелю, советскому ученому, принадлежат большие заслуги в разработке целого ряда проблем, посвященных такой теме, как жидкие вещества. Химия сильно продвинулась вперед благодаря его открытиям. Он считал, что в жидкостях тепловое движение имеет следующий характер. В течение определенного времени каждая молекула колеблется около положения равновесия. Однако она меняет свое место время от времени, перемещаясь скачком на новое положение, которое от предыдущего отстоит на расстояние, составляющее примерно размеры самой этой молекулы. Другими словами, внутри жидкости молекулы перемещаются, но медленно. Часть времени они пребывают около определенных мест. Следовательно, движение их представляет собой что-то вроде смеси совершаемых в газе и в твердом теле движений. Колебания на одном месте через некоторое время сменяются свободным переходом с места на место.

Давление в жидкости

Некоторые свойства жидкого вещества нам известны благодаря постоянному взаимодействию с ними. Так, из опыта повседневности мы знаем о том, что оно действует на поверхность твердых тел, которые соприкасаются с ней, с известными силами. Они именуются силами

Например, приоткрывая отверстие водопроводного крана пальцем и включая воду, мы ощущаем, как она давит на палец. А пловец, который нырнул на большую глубину, не случайно испытывает боль в ушах. Она объясняется тем, что на барабанную перепонку уха воздействуют силы давления. Вода - жидкое вещество, поэтому она обладает всеми его свойствами. Для того чтобы измерить температуру воды на глубине моря, следует использовать очень прочные термометры, чтобы их не могло раздавить давление жидкости.

Это давление обусловлено сжатием, то есть изменением объема жидкости. Она обладает по отношению к этому изменению упругостью. Силы давления - это и есть силы упругости. Следовательно, если жидкость действует на тела, соприкасающиеся с ней, значит, она сжата. Поскольку плотность вещества при сжатии растет, можно считать, что жидкости по отношению к изменению плотности обладают упругостью.

Испарение

Продолжая рассматривать свойства жидкого вещества, переходим к испарению. Вблизи поверхности его, а также непосредственно в поверхностном слое действуют силы, обеспечивающие само существование этого слоя. Они не позволяют покидать объем жидкости молекулам, находящимся в нем. Однако некоторая их часть благодаря тепловому движению развивает довольно большие скорости, с помощью которых становится возможно преодолеть эти силы и покинуть жидкость. Мы называем это явление испарением. Его можно наблюдать при любой температуре воздуха, однако с ее увеличением интенсивность испарения возрастает.

Конденсация

Если молекулы, покинувшие жидкость, удаляются из пространства, находящегося вблизи ее поверхности, то вся она, в конце концов, испаряется. Если же покинувшие ее молекулы не удаляются, они формируют пар. Попавшие в область, находящуюся вблизи поверхности жидкости, молекулы пара втягиваются в нее Этот процесс получил название конденсации.

Следовательно, если молекулы не удаляются, со временем уменьшается скорость испарения. Если плотность пара в дальнейшем увеличивается, достигается ситуация, при которой количество молекул, покидающих за определенное время жидкость, будет равняться количеству молекул, которые возвращаются за это же время в нее. Так возникает состояние динамического равновесия. Пар, находящийся в нем, называется насыщенным. Давление и плотность его увеличиваются с повышением температуры. Чем она выше, тем большее количество молекул жидкости имеет достаточную для испарения энергию и тем большей плотностью должен обладать пар для того, чтобы с испарением могла сравняться конденсация.

Кипение

Когда в процессе нагревания жидких веществ достигается такая температура, при которой насыщенные пары имеют такое же давление, как и внешняя среда, устанавливается равновесие между насыщенным паром и жидкостью. Если жидкость сообщает дополнительное количество теплоты, сразу же происходит превращение в пар соответствующей массы жидкости. Этот процесс именуют кипением.

Кипение представляет собой интенсивное испарение жидкости. Оно происходит не только с поверхности, а касается всего ее объема. Внутри жидкости появляются пузырьки пара. Для того чтобы перейти в пар из жидкости, молекулам необходимо приобрести энергию. Она нужна для преодоления сил притяжения, благодаря которым они удерживаются в жидкости.

Температура кипения

Это та, при которой наблюдается равенство двух давлений - внешнего и насыщенных паров. Она увеличивается при увеличении давления и уменьшается при его уменьшении. Из-за того, что с высотой столба давление в жидкости меняется, кипение в ней происходит на различных уровнях при разной температуре. Только находящийся над поверхностью жидкости в процессе кипения, имеет определенную температуру. Она определяется лишь внешним давлением. Именно ее мы и имеем в виду, когда говорим о температуре кипения. Она отличается у разных жидкостей, что широко применяется в технике, в частности, при разгонке нефтепродуктов.

Скрытая теплота парообразования - это количество тепла, необходимое для того, чтобы превратить в пар изотермически определенное количество жидкости, если внешнее давление то же, что и давление насыщенных паров.

Свойства жидкостных пленок

Все мы знаем о том, как можно получить пену, растворив в воде мыло. Это не что иное, как множество пузырьков, которые ограничены состоящей из жидкости тончайшей пленкой. Однако из образующей пену жидкости можно получить также и отдельную пленку. Свойства ее очень интересны. Пленки эти могут быть очень тонкими: их толщина в самых тонких частях не превышает стотысячной доли миллиметра. Однако они порой очень устойчивы, несмотря на это. Мыльную пленку можно подвергать деформации и растяжению, сквозь нее может проходить струя воды, при этом не разрушая ее. Как же объяснить такую устойчивость? Для того чтобы появилась пленка, необходимо к чистой жидкости прибавить вещества, растворяющиеся в ней. Но не любые, а такие, которые значительно понижают поверхностное натяжение.

Жидкостные пленки в природе и технике

В технике и природе мы встречаемся главным образом не с отдельными пленками, а с пеной, которая представляет собой их совокупность. Ее нередко можно наблюдать в ручьях, где в спокойную воду падают небольшие струйки. Способность воды пениться в данном случае связана с наличием в ней органического вещества, которое выделяют корни растений. Это пример того, как пенятся природные жидкие вещества. А как же обстоит дело с техникой? При строительстве, например, используют специальные материалы, которые обладают ячеистой структурой, напоминающей пену. Они легки, дешевы, достаточно прочны, плохо проводят звуки и теплоту. Для получения их в специальные растворы добавляют способствующие пенообразованию вещества.

Вывод

Итак, мы узнали, какие вещества относятся к жидким, выяснили, что жидкость является промежуточным состоянием вещества между газообразным и твердым. Поэтому у нее есть свойства, характерные для того и другого. которые сегодня широко используются в технике и промышленности (например, жидкокристаллические дисплеи) являются ярким примером этого состояния вещества. В них объединены свойства твердых тел и жидкостей. Сложно представить, какие вещества жидкие изобретет в будущем наука. Однако ясно, что в этом состоянии вещества есть большой потенциал, который можно использовать во благо человечества.

Особый интерес к рассмотрению физико-химических процессов, протекающих в жидком состоянии, обусловлен тем, что сам человек состоит на 90% из воды, которая является самой распространенной на Земле жидкостью. Именно в ней происходят все жизненно важные процессы как в растительном, так и в животном мире. Поэтому для всех нас актуально изучать жидкое состояние вещества.