Токсические эффекты, классификация токсичности. Токсические эффекты антибиотиков Первичный и вторичный токсический эффект

Токсический эффект вредных веществ - это результат взаимодействия орга-низма, вредного вещества и окружающей среды. Эффект воздей-ствия различных веществ зависит от количества попавшего в ор-ганизм вещества, его физико-химических свойств, длительности поступления, химических реакций в организме.

Токсический эффект зависит от биологических особенностей вида, пола, возраста и индивидуальной чувствительности орга-низма, строения и физико-химических свойств яда, количества

опавшего в организм вещества, факторов внешней среды (тем-пературы, атмосферного давления и др.).

Так, разветвление цепи углеводородных атомов ослабляют токсический эффект по сравнению с неразветвленными изомера-ми Введение в молекулу гидроксильной группы ослабляет ток-сичность (спирты менее токсичны, чем соответствующие углево-дороды). Введение галогена в молекулу органического соедине-ния усиливает его токсичность и т.д.

Весьма различна видовая чувствительность к ядам различных организмов, что обусловлено особенностями метаболизма, мас-сой тела и др. Имеет место определенное различие в формирова-нии токсического эффекта в зависимости от пола: отмечается большая чувствительность женщин к действию органических растворителей, а мужчин к соединениям бора, марганца. Одни яды более токсичны для молодых, а другие для пожилых. Инди-видуальная чувствительность определяется состоянием здоровья.

В ряде случаев интермиттирующее (прерывистое) действие яда усиливает токсический эффект. Усиление лгжсического дей-ствия на организм человека наблюдается при повышении темпе-ратуры, влажности, барометрического давления. При значитель-ной физической нагрузке наблюдается увеличение вентиляции легких, что приводит к интенсивному распределению отравляю-щего вещества в организме. Шум и вибрация также могут усили-вать токсический эффект.

Общая токсикологическая классификация промышленных ядов включает в себя следующие виды воздействия на живые ор-ганизмы:

- общетоксическое (кома, отек мозга, судороги): алкоголь и его суррогаты, угарный газ;

- нервно-паралитическое (судороги, параличи): никотин, некоторые пестициды, ОВ;

- кожно-резорбтивное (местные воспаления в комбинации с общетоксическими явлениями): уксусная эссенция, дихлорэтан, мышьяк;

- удушающее (токсический отек мозга): окислы азота, неко-торые ОВ;

- слезоточивое и раздражающее (раздражение слизистых оболочек глаз, носа, горла): пары крепких кислот и щелочей;

^100- психотропное (нарушение психической активности, созна-ния): наркотики, атропин;

- сенсибилизирующее (аллергии): формальдегид, раствори-тели, лаки;

- мутагенное (нарушение генетического кода, изменение на-следственной информации): свинец, марганец, радиоактивные изотопы;

- канцерогенное (вызывают злокачественные опухоли): хром, никель, асбест;

- тератогенное (влияют на репродуктивную, детородную функцию): ртуть, свинец, стирол, борная кислота.

Три последних вида воздействия вредных веществ - мута-генное, канцерогенное и тератогенное - относят к отдаленным последствиям влияния химических соединений на организм. Это специфическое действие, которое проявляется не в период воз-действия и не сразу после его окончания, а в отдаленные перио-ды, спустя годы и даже десятилетия. Отмечается появление раз-личных эффектов, и в последующих поколениях, особенно для веществ с мутагенными свойствами.

Кроме того, яды обладают и избирательной токсичностью, т.е. представляют наибольшую опасность для определенного ор-гана или системы организма. По избирательной токсичности вы-деляют яды:

- воздействующие на сердце. К ним относятся многие ле-карственные препараты, растительные яды, соли металлов (ба-рия, калия);

- воздействующие на нервную систему и вызывающие на-рушение психической деятельности. Это алкоголь, наркотики, угарный газ, некоторые пестициды;

- накапливающиеся в печени. Среди них следует выделить хлорированные углеводороды, ядовитые грибы, фенолы и альдегиды;

- накапливающиеся в почках. Это соединения тяжелых металлов, этиленгликоль, щавелевая кислота;

- воздействующие на кровь. Это анилин и его производ-ные, нитриты;

- воздействующие на легкие. Это окислы азота, озон, фосген;

- накапливающиеся в костях и воздействующие на крове-творение - стронций.

Для большой группы аэрозолей (пыли), не обладающих вы-раженной токсичностью, надо отметить фиброгенный эффект действия на организм. К ним относятся аэрозоли угля, кокса, са-жи алмазов, пыли животного и растительного происхождения, силикатные и кремнийсодержащие пыли, аэрозоли дезинтеграции и конденсации металлов.

Попадая в органы дыхания, вещества этой группы повреж-дают слизистую оболочку верхних дыхательных путей, что при-водит к развитию бронхита. Задерживаясь в легких, пыль вызы-вает перерождение легочной ткани в соединительную ткань и рубцеванию (фиброзу) легких. Профессиональные заболевания, связанные с воздействием аэрозолей, - пневмокониозы и хрони-ческий пылевой бронхит - занимают второе место по частоте сре-ди всех профессиональных заболеваний в России.

Наличие фиброгенного эффекта не исключает общетоксиче-ского воздействия аэрозолей. К ядовитым пылям относят аэрозо-ли пестицида ДДТ, свинца, бериллия, мышьяка и др. При попа-дании их в органы дыхания, помимо местных изменений в верх-них дыхательных путях, развивается картина острого и хрониче-ского отравления.

На производстве редко встречается изолированное действие вредных веществ, обычно работник подвергается сочетающемуся воздействию негативных факторов разной природы (физических, химических, факторов тяжести и напряженности труда) или ком-бинированному влиянию факторов одной природы, например группы химических веществ. Комбинированное действие - это одновременное или последовательное действие на организм не-скольких ядов при одном и том же пути поступления. Различают несколько типов комбинированного действия ядов в зависимости от эффектов токсичности:


Опубликовано в журнале:
РАКТИКА ПЕДИАТРА, ФАРМАКОЛОГИЯ, Июнь 2006г.

С.С ПОСТНИКОВ, д.м.н, профессор кафедры клинической фармакологии РГМУ, Москва К сожалению, безвредных лекарств нет и, более того, по-видимому, и быть не может. Поэтому мы продолжаем рассказывать о побочных эффектах одной из самой назначаемой группы препаратов - антибактериальных средств.

АМИНОГЛИКОЗИДЫ (АМГ)

К аминогликозидам относят соединения, в состав которых входят 2 или более аминосахаров, соединенных гликозидной связью с ядром молекулы - аминоциклитолом.

Большинство первых АМГ - природные АБ (грибки рода Streptomices и Micromonospore). Новейшие АМГ - амикацин (производное канамицина А) и нетилмицин (полусинтетическое производное гентамицина) получены путем химической модификации природных молекул.

АМГ играют важную роль в лечении инфекций, вызванных грамотрицательными организмами. Все АМГ как старые (стрептомицин, неомицин, мономицин, канамицин), так и новые (гентамицин, тобрамицин, сизомицин, амикацин, нетилмицин) обладают широким спектром действия, бактерицидностью, близкими фармакокинетическими свойствами, сходными особенностями побочных и токсических реакций (ото- и нефротоксичность) и синергидным взаимодействием с β-лактамами (Союзфармация, 1991).

При введении через рот АМГ всасываются плохо и поэтому для лечения инфекций вне кишечной трубки не используются.

Однако АМГ могут в значительной мере абсорбироваться (особенно у новорожденных) при местном применении с поверхности тела после ирригации или аппликации и оказывать нефро- и нейротоксическое действие (системный эффект).

АМГ проникают через плаценту, накапливаются у плода (около 50% материнской концентрации) с возможным развитием тотальной глухоты.

НЕФРОТОКСИЧНОСТЬ АМГ

АМГ почти не подвергаются биотрансформации и выводятся из организма в основном путем клубочковой фильтрации. Указывается также на их реабсорбцию проксимальными канальцами. Из-за преимущественно ренального пути элиминации все представители этой группы АБ потенциально нефротоксичны (вплоть до развития тубулярного некроза с ОПН), только в разной степени. По этому признаку АМГ могут быть расположены в следующем порядке: неомицин > гентамицина > тобрамицина > амикацина > нетилмицина (Е.М.Лукьянова, 2002).

Нефротоксичность АМГ (2-10%) чаще развивается в полярных возрастных группах (дети раннего возраста и пожилые люди) - возрастзависимый токсический эффект. Вероятность нефротоксичности также возрастает с увеличением суточной дозы, длительности лечения (более 10 дней), а также кратности введения, и зависит от предшествующей почечной дисфункции.

Наиболее информативными показателями поражения проксимальных канальцев (мишень для токсического воздействия АМГ) являются появление в моче микроглобулинов (β 2 -микроглобулина и α 1 -микроглобулина), которые в норме почти полностью реабсорбируются и катаболизируются проксимальными канальцами и энзимурия (повышение уровня N-ацетил-β-глюкозаминидазы), а также белков с молекулярной массой больше 33 КД, которые фильтруются клубочками. Как правило, эти маркеры обнаруживаются после 5-7 дней лечения, умеренно выражены и обратимы.

Нарушение азотовыделительной функции почек как проявление почечной недостаточности (повышение уровня мочевины и креатинина сыворотки более, чем на 20%) выявляется лишь при существенном поражении почек вследствие длительного применения АМГ в высоких дозах, потенциировании их нефротоксичности петлевыми диуретиками и/или амфотерицином В.

ГЕНТАМИЦИН: почками кумулируется около 40% АБ, распределяемого в тканях больного (в коре почек более 80% "почечного" АБ). В корковом слое почек концентрация гентамицина превышает наблюдаемой в сыворотке крови более чем в 100 раз. Следует подчеркнуть, что для гентамицина характерна более высокая степень канальцевой реабсорбции и большее накопление в корковом слое почек, чем у других АМГ. Гентамицин накапливается также (хотя и в меньших количествах) в мозговом слое и сосочках почек.

Гентамицин, поглощаясь проксимальными канальцами почек, накапливается в лизосомах клеток. Находясь в клетках, он ингибирует лизосомальную фосфолипазу и сфингомиелиназу, что вызывает лизосомальный фосфолипидоз, аккумуляцию миелодных частиц и клеточный некроз. При электронно-микроскопическом исследовании в эксперименте и биопсии почек у человека выявлено набухание проксимальных канальцев, исчезновение ворсинок щеточной каймы, изменения внутриклеточных органелл при введении гентамицина в средних терапевтических дозах. Лечение высокими (>7 мг/кг в день) дозами гентамицина может сопровождаться острым тубулярным некрозом с развитием ОПН и необходимостью гемодиализа в отдельных случаях, продолжительностью олигурической фазы около 10 дней, при этом, как правило, наблюдается полное восстановление функции почек после отмены препарата.

К факторам, повышающим возможность проявления нефротоксичности гентамицина, относятся: предшествующая несостоятельность почек, гиповолемия, одновременное использование других нефротоксических ЛС (гидрокортизона, индометацина, фуросемида и этакриновой кислоты, цефалоридина, циклоспорина, амфотерицина В), рентгеноконтрастных веществ; возраст больного.

Частота возникновения нефротоксических реакций при лечении гентамицином варьирует от 10-12 до 25% и даже 40% в зависимости от дозы и продолжительности лечения. Эти реакции чаще наблюдаются при максимальной концентрации АБ в крови 12-15 мкг/мл. Однако подчеркивается целесообразность определения минимальных (остаточных) концентраций, поскольку увеличение именно этих значений выше 1-2 мкг/мл перед каждым следующим введением является свидетельством кумуляции препарата и, следовательно, возможной нефротоксичности. Отсюда и необходимость лекарственного мониторинга для АМГ.

ОТОТОКСИЧНОСТЬ АМГ

При применении стрептомицина, гентамицина, тобрамицина чаще возникают вестибулярные расстройства, а канамицин и его производное амикацин преимущественно влияют на слух. Однако это избирательность сугубо относительна и у всех АМГ отмечается "широкий" спектр ототоксичности. Так, гентамицин проникает и длительно сохраняется в жидкости внутреннего уха, в клетках слухового и вестибулярного аппарата. Его концентрация в эндо- и перилимфе значительно выше, чем в других органах и приближается к концентрации крови, а на уровне 1 мкг/мл сохраняется там в течение 15 дней после прекращения лечения, вызывая дегенеративные изменения во внешних клетках мерцательного эпителия основной извилины улитки (Ю.Б.Белоусов, С.М.Шатунов, 2001). В клинической картине этим изменениям соответствует нарушение слуха в пределах высоких тонов, а по мере продвижения дегенерации к верхушке улитки - также средних и низких тонов. К ранним обратимым проявлением вестибулярных расстройств (через 3-5 дней от начала применения препарата) относится: головокружение, шум в ушах, нистагм, нарушение координации. При длительном применении АМГ (более 2-3-х недель) происходит замедление их выведения из организма с повышением концентрации во внутренним ухе, в результате чего могут развиться тяжелые инвалидизирующие изменения органов слуха и равновесия. Однако в случае с гентамицином не выявлено достаточной корреляции между его концентрацией во внутреннем ухе и степенью ототоксичности, и, в отличие от канамицина, мономицина и неомицина, глухота при лечении гентамицином практически не развивается. Вместе с этим существуют выраженные вариации среди АМГ в частоте возникновения этих нарушений. Так, в одном из исследований на 10000 больных было выявлено, что амикацин вызывает нарушение слуха в 13,9% случаев, гентамицин - у 8,3% больных, тобрамицин - у 6,3%, а неомицин - у 2,4%. Частота вестибулярных нарушений составляет соответственно 2,8; 3,2; 3,5 и 1,4%.

Ототоксические реакции при лечении гентамицином развиваются значительно реже у взрослых, чем у детей. Теоретически новорожденные являются группой повышенного риска по развитию ототоксических реакций в связи с незрелостью механизмов элиминации, меньшей скоростью клубочковой фильтрации. Однако, несмотря на широкое применение гентамицина у беременных и новорожденных, неонатальная ототоксичность наблюдается исключительно редко.

Слуховые и вестибулярные токсические эффекты тобрамицина также связываются с его передозировкой, длительностью лечения (>10 дней) и особенностями больных - нарушенная почечная функция, обезвоживание, получение других лекарств, также обладающих ототоксичностью или сдерживающих элиминацию АМГ.

У части больных ототоксичность может клинически не проявлять себя, в других случаях больные испытывают головокружение, шум в ушах, потерю остроты восприятия высоких тонов по мере прогрессирования ототоксичности. Признаки ототоксичности обычно начинают появляться спустя длительное время после отмены препарата - отсроченный эффект. Однако известен случай (В.С. Моисеев, 1995), когда ототоксичность развилась после однократного введения тобрамицина.

АМИКАЦИН. Наличие в 1-м положении молекулы амикацина - 4-амино-2-гидроксибутирил-масляной кислоты обеспечивает не только защиту АБ от разрушающего действия большинства ферментов, продуцируемых устойчивыми штаммами бактерий, но и является причиной меньшей ототоксичности по сравнению с другими АМГ (кроме метилмицина): слуховые - 5%, вестибулярные - 0,65% на 1500 лечившихся этим АБ. Однако в другой серии исследований (10000 больных) контролировавшихся аудиометрией, была показана близкая к гентамицину частота слуховых расстройств, хотя в эксперименте было установлено, что амикацин подобно другим АМГ проникает во внутреннее ухо и вызывает дегенеративные изменения волосяных клеток, однако, как и в случае с гентамицином, не было установлено зависимости между уровнем концентрации амикацина во внутреннем ухе и степенью ототоксичности. Показано также, что волосковые клетки слуховой и вестибулярной системы выживали и при том, что гентамицин обнаружился внутри клеток и через 11 месяцев после прекращения лечения. Это доказывает, что не существует простой корреляции между присутствием АМГ и повреждением органов слуха и равновесия. Именно поэтому было высказано предположение о наличии у отдельных больных генетической предрасположенности к повреждающему воздействию АМГ (М.Г. Абакаров, 2003). Подтверждением этому положению было открытие в 1993 году у 15 больных с тугоухостью из 3-х китайских семей (после лечения АМГ) генетической мутации A1555G позиции 12S РНК, кодирующей митохондриальные ферменты, которая не была обнаружена у 278 пациентов без тугоухости, также получавших АМГ. Это позволило сделать вывод о том, что применение АМГ является пусковым механизмом для фенотипического выявления этой мутации.

В последние годы приобретает все большую популярность новый режим дозирования АМГ - однократное введение всей суточной дозы гентамицина (7 мг/кг) или тобрамицина (1 мг/кг) в виде 30-60-минутной инфузии. При этом исходит из того, что АМГ обладают концентрационно-зависимым бактерицидным эффектом и поэтому отношение Cmax/ mic > 10 является адекватным предиктором клинико-бактериологического эффекта.

Эффективность нового способа введения АМГ была показана при инфекциях различной локализации - абдоминальных, респираторных, мочеполовых, кожных и мягкотканных, как острых по течению, так и хронических (муковисцидоз). Однако возникающие при таком режиме дозирования пиковые концентрации АМГ, нередко превышающие 20 мкг/мл, могут теоретически создавать угрозу нефро- и ототоксичности. Между тем исследования D. Nicolau, 1995; K. Kruger, 2001; T. Schroeter et al, 2001 показывают, что однократное введение АМГ не только не уступают, но даже превосходят по безопасности обычное 3-х разовое применение АМГ, возможно, за счет более длительного отмывочного периода.

ТЕТРАЦИКЛИНЫ

Тетрациклины - остеотропны и поэтому накапливаются в костной ткани, особенно молодой, пролиферирующей. В эксперименте у собак отмечено отложение тетрациклина и в постоянных зубах.

Вследствие своей липофильности тетрациклины проникают через плацентарный барьер и откладываются в костях плода (в виде лишенных биологической активности хелатных комплексов с кальцием), что может сопровождаться замедлением их роста.

Применение тетрациклиновых АБ у детей дошкольного возраста приводит в ряде случаев к отложению препаратов в зубной эмали и дентине, что вызывает гипоминерализацию зубов, их потемнение (дисколорацию), гипоплазию зубной эмали, увеличение частоты кариеса, выпадение зубов. Встречаемость этих осложнений при применении тетрациклинов составляет примерно 20%.

При неосторожном или ошибочном применении тетрациклинов в большой дозе (более 2 г в день) может развиться тубулотоксичность (тубулярный некроз) с клиникой ОПН и необходимостью, в отдельных случаях, гемодиализа.

Поэтому использование тетрациклинов у беременных, кормящих грудью (тетрациклин проникает в грудное молоко) и детей до 8 лет не рекомендуется.

Подводя итоги вышеизложенному, хочется еще раз подчеркнуть, что любое лекарство (а значит, и антибиотики) - это обоюдоострое оружие, что, кстати, было подмечено и отражено в древнерусском определении, где слово "зелье" употреблялось в двойном значении - и как лечебное, и как ядовитое средство. Поэтому, начиная фармакотерапию, нельзя в дальнейшем оставлять больного один на один с лекарством, говоря ему (как это еще нередко бывает в той же поликлинике) "попейте его (лекарство) с недельку-другую и потом приходите". Для некоторых больных это "потом" может и не наступить. Делая упор в своем врачебном сознании на терапевтический эффект, мы (может быть сами того не желая) умаляем значение другого важнейшего правила лечения - его безопасности. Такая потеря бдительности делает нас неготовыми к нужным действиям при возникновении неблагоприятных реакций, что может иногда привести к непоправимым последствиям.

Существует множество факторов, которые обусловливают токсический эффект. Эти факторы можно классифицировать так:

1) тип токсического фактора и форма его передачи;

2) условия реакции организма на яды;

3) путь попадания токсина;

4) тип организма испытал влияние токсина.

Примечание 4. Необходимо здесь учесть состояние накопления этого вещества, а также ее транспортировки в организм (носитель). Вместе эти два фактора обуславливают путь (или способ) попадания токсина в крови. Например, углеводороды, транспортируемых с воздушным пылью, очень быстро попадают в кровь через легкие, зато углеводы, переносятся с пищей, в кровь попадают значительно медленнее (препятствие стенок кишечника).

Примечание 5. В зависимости от времени воздействия ксенобиотиков на организм, а также в зависимости от места его действия можно говорить о:

Получение острого местного повреждения, при котором определенный орган несет повреждения в течение относительно короткого времени (секунды, минуты)

Длительное местное действие, при которой выбранный орган несет повреждения в течение длительного времени (года);

Острое общее отравление, когда токсин, действующий в течение короткого времени, проникает в кровь, а затем влияет на важный внутренний орган;

Длительное общее действие, когда токсин влияет на протяжении длительного времени.

Примечание 6. Токсин может попасть в организм через дыхательный аппарат, органы пищеварения и через кожу. Последняя из этих возможностей, то есть попадание через кожу (резорбтивно), является одним из самых распространенных способов попадания - кожа непосредственно и постоянно подвергается воздействию со стороны загрязненной окружающей среды (рис. 1.1).

Рис. 1.1.

Токсичные вещества путем диффузии или через волосяные каналы или через сальные и потовые железы внешнего слоя добираются до эпидермиса, который дышит и осуществляет метаболические процессы, а следовательно, подвергается воздействию токсичных веществ, которые действуют на него. Следующий слой кожи, собственно кожа, имеет непосредственный контакт с лимфатическими и кровеносными сосудами, облегчает проникновение токсинов. Кроме времени реакции и толщины ороговевшего слоя, существенным фактором, который предопределяет проникновение токсина, есть свойства этого токсина. Через липофильную кожу легче проникают неполярные соединения, сложнее - полярные. Транспортировка полярных соединений через липидные слои могут облегчить энзимы из группы пермеаз, которые переносят гидрофильные частицы через неполярные слои. Состояние накопления в случае газов и жидкости облегчает транспортировку токсинов. Газы и жидкость используют волосяные каналы или железы, для твердых тел является очень сложным. Твердые токсины имеют сначала раствориться в поте или жире на поверхности кожи.

Ротовым путем (перорально), то есть через органы пищеварения, попадают в организм те загрязнители окружающей среды, которые находятся в пище и в воде. Для того, чтобы токсин было завязнув с пищеварительного тракта, надо чтобы он получил сорбции в кровь. Путь сорбции токсичных веществ в кровь через тракт пищеварения является очень сложным (рис. 1.2). Через липофильные клетки слизистой оболочки, покрывающей стенки желудка, токсины попадают в кровь.

Рис. 1.2.

Очень кислый раствор pH (~ 1,0) облегчает метаболические процессы токсинов, а их неполярные продукты диффундируют через стенки желудка.

В кишечнике, после изменения pH, слабые основания, в желудке находятся в ионной форме, меняются в нейтральные частицы, которые являются менее полярными и способны к диффузии через стенки кишечника. Токсичные вещества из желудка и кишечника через систему лимфатических сосудов или через обратную вену попадают в печень. Здесь под влиянием ферментов происходят метаболические реакции. их продукты являются менее токсичными и если хорошо растворяются в воде, то попадают в кровеносную систему, что равносильно распространению по всему организму. Часть метаболитов испытывает фильтрации в почках и устраняется из организма. Метаболиты, труднее растворяются под воздействием Холлоуэй кислот, которые находятся в желчи печени, эмульгируют и вместе с желчью через двенадцатиперстную кишку вновь попадают в кишечник, откуда могут быть удалены или входящих в следующем цикла метаболических процессов. Итак, в зависимости от свойств токсина, скорости транспортировки, метаболических процессов и скорости удаления продуктов этих процессов дифференцированная часть ксенобиотиков остается в организме. Ее количество определяет так называемый параметр усвоения ксенобиотиков (р), который определяется как отношение концентрации этого токсина или его метаболита в крови после ротового попадание в концентрации токсина, попавшего внутривенно:

р = Сротова / Свенозна

Следующим путем попадания токсинов является дыхательный аппарат (ингаляционный путь). Пыль, капли тумана, газы, загрязняющие атмосферу, одновременно с воздухом, которым мы дышим, попадают в легкие. Строение легких - очень развитая поверхность альвеол - и их функция обусловливают обмен кислорода и диоксида углерода между кровью и газами, содержащимися в легких, что делает их очень уязвимыми по адсорбции токсинов. Хорошо растворимые в воде загрязнители (хлороводород, аммиак) в значительной степени растворяются в носовых и горловых выделениях или также в бронхах, повреждая их, и в незначительном количестве попадают в кровь. Большие частицы пыли могут задерживаться на волосках в верхней части дыхательного аппарата, откуда во время чихания или кашля попадают в пищеварительного тракта. Таким образом, полициклические углеводороды, осевших на частицах сажи, попадают в легкие.

О скорости диффузии (D) через альвеолы свидетельствует растворимость этого газового загрязнителя в крови (s), а также по правилу Фицко поверхность альвеол (А), а также разница давлений частиц газа в воздухе и в крови (ΔΡ). Следовательно, скорость диффузии выражается формулой:

D = f (s, Α, ΔΡ)

Примечание 7. Оценивая токсичность, следует принимать во внимание возраст, состояние здоровья, устойчивость индивидуального организма, а также условия жизни. Общей зависимостью является сильнее токсическое воздействие по очень молодых организмов. Общий плохое состояние здоровья также усиливает действие ксенобиотиков. Лицу, живущих в хороших условиях окружающей среды, здоровые, проявляют значительную сопротивляемость токсинам.

Разделы токсикологии

Токсикометрия - количественная оценка токсичности, измерение зависимости "доза - реакция".

Токсикодинамика - изучение механизмов, лежащих в основе токсического действия различных химических веществ, закономерностей формирования токсического процесса, его проявлений.

Токсикокинетика - выяснение механизмов проникновения токсикантов в организм, закономерностей из распределения, метаболизма и выведения.

Токсичность зависит от дозы и экспозиции. Также от изомеров. Тионовые и тиоловые изомеры у ФОС. Введение токсофорных групп.

Механизмы токсичности

Пути проникновения пестицидов в организм животного и человека.

1. Распределение

Перемещение по водной составляющей тела (лимфатическая и кровеносная системы). Липофильные вещества выводятся сложнее гидрофильных.

Факторы, влияющие на скорость расрпотранения:

Скорость потока крови к ткани

Масса ткани

Способонсть вещества передвигаться через мембраны

Сродство вещества к ткани по сравнению с кровью.

1. Взаимодействие с местом действия

2. Нарушение клеток, повреждение

3. Гибель или восстановление

Механизмы, способствующие передвижению крови к месту действия:

Пористость капиллиров

Специфический транспорт через мембраны

Накопление в органеллах клетки

Обратимое внутриклеточное связывание

Препятствующие перемещению:

Связывание протеинами плазмы (ХОС) - альбумин, бета-глобулин, церулоплазмин, альфа и бета-липопротеины, альфа-гликопротеин кислый.

Специфические барьеры (гематоэнцифаллические и плацентарные).

Слой глиальных клеток, покрывающих поверхность капилляров. Омываются с одной стороны кровью, с другой - межклеточной жидкостью.

Плацентный барьер - несколько слоев клеток между внутриплодовой жидкостью и материнской кровеносной системой. Липофльные - диффузией, ЦНС отвечает за биотрансформацию.

Накопление в запасных тканях (ХОС в жировых клетках; свинец - костная ткань).

Связывание с неспецифичным местом действия (ФОС - бутирилхолинэстераза)

Экспорт из клетки

Связывание органами, тканями: печени и почки обладают высокой споосбностью связывания. Жировая ткань: ХОС, пиретроиды. Костная ткань: фтор, свинец, стронций.

Токсические эффекты, классификация токсичности

Влияние на место действия:

Токсикант может нарушать функцию молекулы или ее разрушать:

Нарушение функции - ингибирование: пиретроиды блокируют закрытие ионных каналов, бензимидазолы блокируют полимеризацию тубулина.

Нарушение функций протеинов: реакция с тиоловыми группами протеинов (фталимиды); нарушение функций ДНК мутагены, канцерогены.


Влияние на место действия:

Разрушение молекулы:

Изменение молекулы путем перекрестногосвязывания и фрагментации: сероуглерод и алкилирующие агенты перекрестно связывают цитоскелетарные протеины, ДНК

Спонтанное разрушение: свободные раликалы инициируют разрушение липидов путем захвата водорода из жирных кислот

Острые эффекты:

Дерматотоксичность:

Свойство химиката повреждать кожные покровы путем прямого контакта или резорбтивного действия вследствие проникновение химиката внутрь организма с развитием системных эффектов.

Химический дерматит - процесс, развивающийся в результате местного воздействия токсиканта и сопровождающийся воспалительной реакцией

Неаллергический контактный - бывает раздражающего (цитотоксический эффект) и прижигающего действия (разрушение покровных тканей). Раздражающие - органические растворители, дитиокарбаматы.

Аллергический контактный - после относительно продолжительного контакта.

Токсикодермия - патологический процесс в коже, формирующийся вследствие резорбтивного действия токсиканта. Болезнь - хлоракне.

Пульмонотоксичность - свойство токсиканта вызывать нарушения органов дыхания.

Раздражение - аммиак, хлор, фосфин.

Некрозы клеток - пневмония, отек легких (кадмий, ФОС, диоксид серы, паракват, дихлорметан, керосин).

Фиброзы (образование коллагенных тканей) - силикоз, асбестоз.

Энфизема - окись кадмия, окиси азота, озон.

Гематотоксичность - свойство токсиканта нарушать функции клеток крови, либо клеточный состав крови.

Нарушение свойств гемоглобина, анемия, аплазия костного мозга.

Метгемоглобин - гемоглобин, железо которого трехвалентно. Его уровень менее 1%. метгемоглобинемия развивается под действием ксенобиотиков, которые либо непосредственно окисляют железо, входящее в структуру гемоглобина, лбио превращаются в организме в подобные агенты. Скорость образования метгемоглобина превышает скорость образования гемоглобина. Динитрофенолы, нафтиламины и т.п.

Карбоксигемоглобинемия - образование соответствующего вещества в крови под воздействием CO и карбонилами металлов.

Гемолиз соповождается:

1. Повышением содержания коллоидно-осматических свойств крови из-за возрастания содержания белка.

2. Ускоренным разрушением гемоглобина.

3. Затруднением диссоциации оксигемоглобина.

4. Нефротоксическим действием гемоглобина.

Заболевания:

Аплазия костного мозга - сокращение числа форменных единиц крови.

Тромбоцитопения и лейкемия.

Нейротоксичность - способность пестицида нарушать действие нервной системы вцелом. Места действия: нейрон, аксон, миелиновое содержимое покрытие клеток, система передачи нервных импульсов.

Нейрон - нейронопатия (гибель нейронов). Вещества: мышьяк, азиды, цианиды, этанол, метанол, свинец, ртуть, метилртуть, бромистый метил, триметилолово, ФОС.

Аксон - аксонопатия. Акриламид, сероуглерод, хлордекан, дихлорфеноксиацетат, ФОС, пиретроиды, гексан.

Миелинопатия - повреждение миелинового слоя. Свинец, трихлорфон.

Нарушение действия нервной системы: ХОС, пиретроиды, авермектины, фенилпиразоды, микотоксины, токсины членистоногих.

Гепатотоксичность: свойство химикатов вызывать структурно-функциональные нарушения печени. Повреждения:

Жировое перерождение. Раннее появление предшествует некрозу. Причины:

Нарушение процессов катаболизма липидов

Избыточное поступление жирных кислот в печень

Повреждение механизмов выделения триглицеридов в плазму крови

Некроз печени - дегенеративный процесс, приводящий к гибели клеток. Часть - фокальный некроз, полностью - тотальный некроз. Сопровождается повреждением плазматических мембран и стеатозом. Токсиканты: альфатические и ароматические углеводороды, нитросоединения, нитрозоамины, афлатоксины.

Холестаз - нарушение процесса желчевыделения. Токсиканты: лекарства (сульфаниламиды, эстрадиол), анилины.

Цирроз - образование коллагеновых тяжей, нарушающих нормальную структуру органа, нарушающих внутрипеченочный кровоток, желчеотделение. Этанол, галогеноуглероды.

Канцерогенез

Нефротоксичность - способность пестицида нарушать структурно-функциональные нарушения почек. И

Хроматография - это метод разделения и опреления веществ, основанных на разделении компонентов между двумя фазами. Неподвижной служит твердое пористое вещество (сорбент), или пленка жидкости на твердом веществе. Подвижная фаза представляет собой жидкость или газ, протекающей через неподвижную фазу (иногда под давлением). Компоненты анализируемой смеси (сорбаты) вместе с подвижной фазой передвигаются вдоль стационарной фазы. Ее обычно помещают в стеклянную или металлическую трубку, называемую колонкой. В зависимости от силы взаимодействия с поверхностью сорбента за счет адсорбции или другого механизма компоненты перемещаются вдоль колонки с разной скоростью. Одни компоненты останутся в верхнем слое сорбента, другие, в меньшей степени взаимодействующие с сорбентом, окажутся в нижней части колонки. А некоторые и вовсе покинут колонку вместе с подвижной фазой. Далее вещества попадают в детектор. Наиболее широко применяются ионизационные детекторы, принцип работы которого основан на изменении ионного тока. Он возникает под действием источника ионизации - электрического поля между электродами детектора. В качестве источника ионизации используют: электронную ионную эмиссию, радиоактивные изотопы, электрический разряд.

Токсический эффект – это результат взаимодействия яда, организма и окружающей среды.

Токсический эффект воздействия яда на организм зависит от:

1. Химического строения яда .

· токсическое действие органических веществ уменьшается с разветвлением цепи углеродных атомов (Правило разветвленных цепей );

· токсическое действие органических соединений возрастает :

С увеличением числа атомов С в гомологическом ряду (близком по строению). (Правило Ричардсона );

При замыкании цепи атомами С в молекуле (циклогексан токсичнее гексана);

С увеличением числа кратных связей в молекуле (этан менее токсичен, чем этилен – двойная связь между 2 атомами С);

При введении в молекулу углеводорода галогена, например, Cl (метан менее токсичен, чем хлорметан);

При введении в молекулу углеводорода гидроксильной группы OH (метан менее токсичен, чем метанол);

При введение в молекулу бензола или толуола нитро-NO 2 или амино-NH 2 групп;

При увеличении коэффициента жирорастворимости вредных веществ. Поэтому, нервные волокна, богатые липидами, накапливают токсические вещества.

2. Видовой чувствительности к ядам . Различия воздействия ядов на организм зависят от особенностей обмена веществ, сложности ЦНС, продолжительности жизни, размера, веса, особенностей кожных покровов.

3. Возраста . Чувствительность подростков к токсическим веществам в 2–3 и даже в 10 раз выше, чем у взрослых. Имеются данные, что дети, в отличие от взрослых и подростков, наименее восприимчивы к ядам.

4. Пола . Данные противоречивы.

5. Индивидуальной вариабельности и чувствительности к ядам . В основе лежит биохимическая индивидуальность. Не возможно найти лекарство, которое действовало одинаково на всех людей.

6. Биоритмов .

· сезонных (токсический эффект вредных веществ более выражен весной у ослабленного организма);

· суточных . Чем выше активность физиологических функций, тем слабее токсический эффект:

Max деление клеток с 3 до 9 ч с пиком в 6 ч;

Max артериальное давление – в 18 ч, min – в 9 ч;

7. Времени воздействия яда :

· непрерывное – концентрация яда во время отравления остается постоянной;

· прерывистое – период вдыхания яда чередуется с периодом вдыхания чистого воздуха;

· интермиттирующее – концентрация яда во время отравления изменяется.

Изучение интермиттирующего характера очень важно в промышленной токсикологии. На химическом предприятии выброс вредных веществ в течение смены может значительно колебаться. Эксперименты показали, что интермиттирующий характер отравления более токсичен, чем непрерывный , даже если максимальная концентрация при этом не превышает концентрацию при непрерывном воздействии. Это связано со срывом формирования адаптации организма.



8. Факторов внешней среды :

· температурный – токсический эффект большинства ядов в различных температурных условиях проявляется по-разному. В определенной температурной зоне он оказывается наименьшим;

· давления – при снижении барометрического давления до 600-500 мм рт. ст. усиливается токсическое действие CO (космос).